如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD的E點(diǎn)上,BG=10.
(1)當(dāng)折痕的另一端F在AB邊上時(shí),如圖.求△EFG的面積;
(2)當(dāng)折痕的另一端F在AD邊上時(shí),如圖.證明四邊形BGEF為菱形,并求出折痕GF的長(zhǎng).
(1)過(guò)點(diǎn)G作GH⊥AD,則四邊形ABGH為矩形,
∴GH=AB=8,AH=BG=10,由圖形的折疊可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°,
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF△GHE,
EF
EG
=
AE
GH

∴EF=5,
∴S△EFG=
1
2
EF•EG=
1
2
×5×10=25.

(2)由圖形的折疊可知四邊形ABGF≌四邊形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EFBG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四邊形BGEF為平行四邊形,
又∵EF=EG,
∴平行四邊形BGEF為菱形;
連接BE,
BE,F(xiàn)G互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE=
AE2+AB2
=8
5
,
∴BO=4
5
,
∴OG=
BG2-BO2
=2
5
,
∵四邊形BGEF是菱形,
∴FG=2OG=4
5
,
答:折痕GF的長(zhǎng)是4
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

小明從平面鏡中看到一個(gè)沒(méi)有標(biāo)明鐘點(diǎn)數(shù)的時(shí)鐘鐘面(如圖),則此時(shí)實(shí)際時(shí)刻是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知平面直角坐標(biāo)系中,有一矩形紙片OABC,O為坐標(biāo)原點(diǎn),ABx軸,B(-3,
3
),現(xiàn)將紙片按如圖折疊,AD,DE為折痕,∠OAD=30°.折疊后,點(diǎn)O落在點(diǎn)O1,點(diǎn)C落在線段AB上的C1處,并且DO1與DC1在同一直線上.則C1的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,畫出△ABC關(guān)于y軸的對(duì)稱圖形△A′B′C′,并寫出△ABC關(guān)于y軸對(duì)稱的三角形的各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖將一個(gè)矩形紙片ABCD,沿著BE折疊,使C、D點(diǎn)分別落在點(diǎn)C1,D1處.若∠C1BA=50°,則∠AED1的度數(shù)為( 。
A.30°B.40°C.50°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將一張長(zhǎng)方形紙條按下圖所示的方法折疊,則∠1的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,點(diǎn)D在BC邊上,把△ABC沿AD翻折使AB與AC重合,得△AB′D,則△ABC與△AB′D重疊部分的面積為( 。
A.
3-
3
2
B.
3
-1
2
C.3-
3
D.
3-
3
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示的四個(gè)圖形中,圖形(1)與圖形______成軸對(duì)稱;圖形(1)與圖形______成中心對(duì)稱.(填寫符合要求的圖形所對(duì)應(yīng)的符號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一塊矩形的紙片ABCD,AB=9,AD=6,將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將△AED沿DE向右翻折,AE與BC的交點(diǎn)為F,則△CEF的面積為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案