【題目】計算:
(1)(﹣a23+(﹣a32﹣a2a3;
(2)(3+a)(3﹣a)+a2;
(3)(x+y﹣3)(x+y+3);
(4)( 2+(﹣2)3+|﹣3|﹣(π﹣3.14)0

【答案】
(1)解:原式=﹣a6+a6﹣a5

=﹣a5


(2)解:原式=9﹣a2+a2

=9


(3)解:原式=[(x+y)﹣3][(x+y)+3]

=(x+y)2﹣9

=x2+y2+2xy﹣9


(4)解:原式=9+(﹣8)+3﹣1

=3


【解析】(1)先算乘方,再合并同類項即可;(2)先算乘法,最后算加減即可.(3)把括號中的每一項分別同另一項相乘,再把結(jié)果相加減即可;(4)分別根據(jù)0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的運算法則、數(shù)的乘方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可.
【考點精析】認(rèn)真審題,首先需要了解零指數(shù)冪法則(零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))),還要掌握整數(shù)指數(shù)冪的運算性質(zhì)(aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知3a2+2a+1=0,求代數(shù)式2a(1﹣3a)+(3a+1)(3a﹣1)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P(b,2)與點Q(3,2a)關(guān)于原點對稱,則a= ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10) 已知雙曲線y=x0),直線l1y=kx)(k0)過定點F且與雙曲線交于A,B兩點,設(shè)Ax1,y1),Bx2,y2)(x1x2),直線l2y=x+

1)若k =﹣1,求OAB的面積S;

2)若AB= ,求k的值;

3)設(shè)N0,2),P在雙曲線上,M在直線l2上且PMx軸,問在第二象限內(nèi)是否存在一點Q,使得四邊形QMPN是周長最小的平行四邊形,若存在,請求出Q點的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小劉用84米長的鐵絲圍成一個長方形,要使長比寬多4米,則長方形的長為(
A.29
B.27
C.25
D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2AC,BD相交于點O
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EFAC相交于點G
①判斷AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當(dāng)點E為邊BC的四等分點時(BECE),求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)1,1,2,35,813是“斐波那契數(shù)列”的一部分,若去掉其中的兩個數(shù)后這組數(shù)的中位數(shù)、眾數(shù)保持不變,則去掉的兩個數(shù)可能是( 。

A. 25B. 1,5C. 23D. 5,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點E、F分別在AB、CD上,且AE=CF

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時,yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時間多少小時?

查看答案和解析>>

同步練習(xí)冊答案