【題目】20197月某日,某市的最高氣溫是32℃最低氣溫是24℃,則當(dāng)天該市氣溫t(℃)的變化范圍是(

A.t 32B.t 24C.24 t 32D.24 t 32

【答案】D

【解析】

根據(jù)最高氣溫和最低氣溫確定當(dāng)天該市氣溫t(℃)的變化范圍即可.

某市的最高氣溫是32℃最低氣溫是24

∴當(dāng)天該市氣溫t(℃)的變化范圍是24 t 32

故答案為:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在小學(xué)我們知道正方形具有性質(zhì)四條邊都相等,四個(gè)內(nèi)角都是直角請(qǐng)適當(dāng)利用上述知識(shí),解答下列問(wèn)題

已知如圖在正方形ABCD,AB=4點(diǎn)G射線AB上的一個(gè)動(dòng)點(diǎn),DG為邊向右作正方形DGEF,EHAB于點(diǎn)H

1填空AGD+∠EGH=   °

2若點(diǎn)G在點(diǎn)B的右邊

求證DAG≌△GHE;

試探索EHBG的值是否為定值,若是,請(qǐng)求出定值若不是,請(qǐng)說(shuō)明理由

3連接EBG點(diǎn)的整個(gè)運(yùn)動(dòng)點(diǎn)G與點(diǎn)A重合除外過(guò)程中,EBH的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

⑴ 請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系, 使A點(diǎn)坐標(biāo)為(2,4),B點(diǎn)坐標(biāo)為(4,2);

⑵ 請(qǐng)?jiān)冢?)中建立的平面直角坐標(biāo)系的第一象限內(nèi)的格點(diǎn)上確定點(diǎn)C, 使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形, 且腰長(zhǎng)是無(wú)理數(shù), 則C點(diǎn)坐標(biāo)是 , △ABC的周長(zhǎng)是 (結(jié)果保留根號(hào));

⑶ 以(2)中△ABC的點(diǎn)C為旋轉(zhuǎn)中心、旋轉(zhuǎn)180°后的△ABC, 連結(jié)AB′和AB, 試說(shuō)出四邊形ABAB′是何特殊四邊形, 并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育老師從七年級(jí)學(xué)生中抽取40名參加全校的健身操比賽.這些學(xué)生身高(單位:cm)的最大值為175,最小值為155.若取組距為3,則可以分成____組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把兩個(gè)三角形按如圖1放置,其中∠ACB=∠DEC=90°,∠CAB=45°,∠CDE=30°,且AB=6,DC=7,把△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°△D1CE1,如圖2,這時(shí)ABCD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F;

(1)求∠ACD1的度數(shù);

(2)求線段AD1的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(﹣1,2)是由點(diǎn)Q0,﹣1)經(jīng)過(guò)( 。┒玫降模

A.先向右平移1個(gè)長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度

B.先向左平移1個(gè)長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度

C.先向上平移3個(gè)長(zhǎng)度,再向左平移1個(gè)單位長(zhǎng)度

D.先向下平移1個(gè)長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長(zhǎng)線、DC的延長(zhǎng)線于點(diǎn)G,H,交BD于點(diǎn)O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】快、慢兩車(chē)分別從相距180千米的甲、乙兩地同時(shí)出發(fā),沿同一路線勻速行駛,相向而行,快車(chē)到達(dá)乙地停留一段時(shí)間后,按原路原速返回甲地.慢車(chē)到達(dá)甲地比快車(chē)到達(dá)甲地早小時(shí),慢車(chē)速度是快車(chē)速度的一半,快、慢兩車(chē)到達(dá)甲地后停止行駛,兩車(chē)距各自出發(fā)地的路程y(千米)與所用時(shí)間x(小時(shí))的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:

1)請(qǐng)直接寫(xiě)出快、慢兩車(chē)的速度;

2)求快車(chē)返回過(guò)程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式;

3)兩車(chē)出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間相距90千米的路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,點(diǎn)上,點(diǎn)的內(nèi)部, 平分,且.

(1)求證: ;

(2)求證:點(diǎn)是線段的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案