【題目】在△ABC中,∠ACB=90°,AC=BC,直線,MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖1的位置時(shí),求證:DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖2的位置時(shí),求證:DE=AD﹣BE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖3的位置時(shí),線段DE、AD、BE之間又有什么樣的數(shù)量關(guān)系?請(qǐng)你直接寫出這個(gè)數(shù)量關(guān)系,不要證明.
【答案】(1)證明見解析;(2)證明見解析;(3)DE=BE﹣AD.
【解析】
(1)利用垂直的定義得∠ADC=∠CEB=90°,則根據(jù)互余得∠DAC+∠ACD=90°,再根據(jù)等角的余角相等得到∠DAC=∠BCE,然后根據(jù)“AAS”可判斷△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代換得到DE=AD+BE;(2)與(1)一樣可證明△ADC≌△CEB,則CD=BE,AD=CE,于是有DE=CE﹣CD=AD﹣BE;(3)與(1)一樣可證明△ADC≌△CEB,則CD=BE,AD=CE,于是有DE=CD﹣CE=BE﹣AD.
(1)∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB,
,
∴△ADC≌△CEB(AAS),
∴CD=BE,AD=CE,
∴DE=CE+CD=AD+BE;
(2)與(1)一樣可證明△ADC≌△CEB,
∴CD=BE,AD=CE,
∴DE=CE﹣CD=AD﹣BE;
(3)DE=BE﹣AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,D是BC延長(zhǎng)線上一點(diǎn),E是BD的垂直平分線與AB的交點(diǎn),DE交AC于點(diǎn)F,求證:EA=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD為△ABC的角平分線,請(qǐng)按如下要求操作解答:
(1)過(guò)點(diǎn)D畫DE∥BC交AB于E,若∠A=68°,∠AED=42°,求∠BDC的度數(shù).
(2)畫△ABC的角平分線CF交BD于點(diǎn)M,若∠A=60°,求∠CMD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題,真命題是( )
A.如圖,如果OP平分∠AOB,那么,PA=PB
B.三角形的一個(gè)外角大于它的一個(gè)內(nèi)角
C.如果兩條直線沒(méi)有公共點(diǎn),那么這兩條直線互相平行
D.有一組鄰邊相等的矩形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)中,黑板上畫著如圖所示的圖形,活動(dòng)前老師在準(zhǔn)備的四張紙片上分別寫有如下四個(gè)等式中的一個(gè)等式: ①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同學(xué)閉上眼睛從四張紙片中隨機(jī)抽取一張,再?gòu)氖O碌募埰须S機(jī)抽取另一張.請(qǐng)結(jié)合圖形解答下列兩個(gè)問(wèn)題:
(1)當(dāng)抽得①和②時(shí),用①,②作為條件能判定△BEC是等腰三角形嗎?說(shuō)說(shuō)你的理由;
(2)請(qǐng)你用樹狀圖或表格表示抽取兩張紙片上的等式所有可能出現(xiàn)的結(jié)果(用序號(hào)表示),并求以已經(jīng)抽取的兩張紙片上的等式為條件,使△BEC不能構(gòu)成等腰三角形的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com