【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x2時(shí),y的值;(2)當(dāng)1x≤4時(shí),y的取值范圍;(3)當(dāng)1≤y4時(shí),x的取值范圍.

【答案】(1)y=-2;(2)y的取值范圍為-4<y≤-1;(3)x的取值范圍-4≤x<-1.

【解析】

列表,根據(jù)描點(diǎn)法畫出圖像即可;(1)x=2代入反比例解析式求出y的值即可;(2)分別求出x=1x=4時(shí)y的值,結(jié)合圖象確定出y的范圍即可;(3)分別求出y=1y=4時(shí)x的值,結(jié)合圖象確定出x的范圍即可.

列表得:

作出反比例y=-的圖象,如圖所示,

(1)x=2代入,得y=-=-2;

(2)當(dāng)x=1時(shí),y=-4;當(dāng)x=4時(shí),y=-1,

根據(jù)圖象,得當(dāng)1<x≤4時(shí),y的取值范圍為-4<y≤-1;

(3)當(dāng)y=1時(shí),x=-4;當(dāng)y=4時(shí),x=-1,

根據(jù)題意,得當(dāng)1≤y<4時(shí),x的取值范圍為-4≤x<-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班甲、乙、丙三位同學(xué)進(jìn)行了一次用正方形紙片折疊探究相關(guān)數(shù)學(xué)問題的課題學(xué)習(xí)活動(dòng).

活動(dòng)情境:

如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點(diǎn)E、G),使點(diǎn)B落在AD邊上的點(diǎn) F處,FNDC交于點(diǎn)M處,連接BFEG交于點(diǎn)P

所得結(jié)論:

當(dāng)點(diǎn)FAD的中點(diǎn)重合時(shí):(如圖1)甲、乙、丙三位同學(xué)各得到如下一個(gè)正確結(jié)論(或結(jié)果):

甲:△AEF的邊AE=____cm,EF=____cm

乙:△FDM的周長為16 cm;

丙:EG=BF.

你的任務(wù):

1】填充甲同學(xué)所得結(jié)果中的數(shù)據(jù);

2】寫出在乙同學(xué)所得結(jié)果的求解過程;

3】當(dāng)點(diǎn)FAD邊上除點(diǎn)A、D外的任何一處(如圖2)時(shí):

試問乙同學(xué)的結(jié)果是否發(fā)生變化?請(qǐng)證明你的結(jié)論;

丙同學(xué)的結(jié)論還成立嗎?若不成立,請(qǐng)說明理由,若你認(rèn)為成立,先證明EG=BF,再求出SS為四邊形AEGD的面積)與xAF=x)的函數(shù)關(guān)系式,并問當(dāng)x為何值時(shí),S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們發(fā)現(xiàn):若AD是△ABC的中線,則有AB2+AC22AD2+BD2),請(qǐng)利用結(jié)論解決問題:如圖,在矩形ABCD中,已知AB20,AD12,EDC中點(diǎn),點(diǎn)P在以AB為直徑的半圓上運(yùn)動(dòng),則CP2+EP2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方形AOBC各頂點(diǎn)的坐標(biāo)分別為A0,3),O00),B3,0),C3,3).若以原點(diǎn)為位似中心,將這個(gè)正方形的邊長縮小為原來的,則新正方形的中心的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個(gè)全等的等腰直角三角形,,的頂點(diǎn)E的斜邊BC的中點(diǎn)重合繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

如圖,當(dāng)點(diǎn)Q在線段AC上,且時(shí),的形狀有什么關(guān)系,請(qǐng)證明;

如圖,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),有什么關(guān)系,說明理由;

當(dāng),時(shí),求PQ兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)圖(1)是一個(gè)蒙古包的照片,這個(gè)蒙古包可以近似看成是圓錐和圓柱組成的幾何體,如圖(2)所示.

(1)請(qǐng)畫出這個(gè)幾何體的俯視圖;

(2)圖(3)是這個(gè)幾何體的正面示意圖,已知蒙古包的頂部離地面的高度EO1=6米,圓柱部分的高OO1=4米,底面圓的直徑BC=8米,求EAO的度數(shù)(結(jié)果精確到0.1°).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)神舟飛船完成變軌后,就在離地球表面400 km的圓形軌道上運(yùn)行,如圖,當(dāng)飛船運(yùn)行到地球表面上P點(diǎn)的正上方的A處時(shí),從飛船上能直接看到的地球上最遠(yuǎn)的點(diǎn)與P點(diǎn)相距(  )

(地球半徑約為6 400 kmπ≈3,sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,結(jié)果保留整數(shù))

A. 2 133 km B. 2 217 km C. 2 298 km D. 7 467 km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,CDAB于點(diǎn)D,點(diǎn)O是∠BAC的平分線上一點(diǎn),⊙OAB相切于點(diǎn)M,與CD相切于點(diǎn)N

(1)求證:∠AOC135°;

(2)NC3,BC2,求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過原點(diǎn)且與x軸交于點(diǎn)A,頂點(diǎn)的縱坐標(biāo)是

求拋物線的函數(shù)表達(dá)式及點(diǎn)A坐標(biāo);

根據(jù)圖象回答:當(dāng)x為何值時(shí)拋物線位于x軸上方?

直接寫出所求拋物線先向左平移3個(gè)單位,再向上平移5個(gè)單位所得到拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案