如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過點(diǎn)B、D.
(1)求點(diǎn)A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長交BC于點(diǎn)E,連接BQ并延長交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.

【答案】分析:(1)AO=AC-OC=m-3,用線段的長度表示點(diǎn)A的坐標(biāo);
(2)∵△ABC是等腰直角三角形,∴△AOD也是等腰直角三角形,∴OD=OA,∴D(0,m-3),又P(1,0)為拋物線頂點(diǎn),可設(shè)頂點(diǎn)式,求解析式;
(3)設(shè)Q(x,x2-2x+1),過Q點(diǎn)分別作x軸,y軸的垂線,運(yùn)用相似比求出FC、EC的長,而AC=m,代入即可.
解答:(1)解:由B(3,m)可知OC=3,BC=m,又△ABC為等腰直角三角形,
∴AC=BC=m,OA=m-3,
∴點(diǎn)A的坐標(biāo)是(3-m,0).

(2)解:∵∠ODA=∠OAD=45°∴OD=OA=m-3,則點(diǎn)D的坐標(biāo)是(0,m-3).
又拋物線頂點(diǎn)為P(1,0),且過點(diǎn)B、D,
所以可設(shè)拋物線的解析式為:y=a(x-1)2,
得:
解得
∴拋物線的解析式為y=x2-2x+1;

(3)證明:過點(diǎn)Q作QM⊥AC于點(diǎn)M,過點(diǎn)Q作QN⊥BC于點(diǎn)N,
設(shè)點(diǎn)Q的坐標(biāo)是(x,x2-2x+1),
則QM=CN=(x-1)2,MC=QN=3-x.
∵QM∥CE
∴△PQM∽△PEC

,得EC=2(x-1)
∵QN∥FC
∴△BQN∽△BFC

,得
又∵AC=4
∴FC(AC+EC)=[4+2(x-1)]=(2x+2)=×2×(x+1)=8
即FC(AC+EC)為定值8.
點(diǎn)評(píng):本題考查了點(diǎn)的坐標(biāo),拋物線解析式的求法,綜合運(yùn)用相似三角形的比求線段的長度,本題也可以先求直線PE、BF的解析式,利用解析式求FC,EC的長.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3精英家教網(wǎng),m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的二次函數(shù)圖象經(jīng)過點(diǎn)B、D.
(1)用m表示點(diǎn)A、D的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式;
(3)點(diǎn)Q為二次函數(shù)圖象上點(diǎn)P至點(diǎn)B之間的一點(diǎn),且點(diǎn)Q到△ABC邊BC、AC的距離相等,連接PQ、BQ,求四邊形ABQP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過點(diǎn)B、D.
(1)求點(diǎn)A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長交BC于點(diǎn)E,連接BQ并延長交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,已知△ABC為等邊三角形,D、F分別為BC、AB邊上的點(diǎn),CD=BF,以AD為邊作等邊△ADE.
(1)△ACD和△CBF全等嗎?請(qǐng)說明理由;
(2)判斷四邊形CDEF的形狀,并說明理由;
(3)當(dāng)點(diǎn)D在線段BC上移動(dòng)到何處時(shí),∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為等邊三角形,D,E,F(xiàn)分別在邊BC,CA,AB上,且△DEF也是等邊三角形,除已知相等的邊以外,請(qǐng)你猜想還有哪些相等線段,并證明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC為等邊三角形,點(diǎn)D.E分別在BC.AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
(1)求證:△ABE≌△CAD;
(2)求∠AFE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案