【題目】一塊含45°的直角三角板ABC, AB=AC, BAC=90°, 點(diǎn)D為射線CB上一點(diǎn),且不與點(diǎn)C,點(diǎn)B重合,連接AD.過點(diǎn)A作線段AD的垂線l,在直線l上,截取AE=AD(點(diǎn)E與點(diǎn)C在直線AD的同側(cè)),連接CE.

1)當(dāng)點(diǎn)D在線段CB上時(shí),如圖1,線段CEBD的數(shù)量關(guān)系為____________,位置關(guān)系為___________;

2)當(dāng)點(diǎn)D在線段CB的延長線上時(shí),如圖2,

①請將圖形補(bǔ)充完整;

②(1)中的結(jié)論是否仍成立?如果成立,請證明;如果不成立,請說明理由.

【答案】1CE=BD, CEBD;(2)①見解析,②成立,理由見解析

【解析】

1)在圖1中證明△ABD≌△ACE,得到CE=BD,∠B=ACE=45°即可得到∠BCE=90°,即CEBD;

2)①根據(jù)題意,畫出圖形即可;

②與(1)同理,證明△ADB≌△AEC,然后得到CE=BD,然后得到∠ABC=∠ACB=45°,然后得到∠BCE=90°,即CEBD.

證明:(1)∵ADl,

∴∠DAE=BAC=90°,

∴∠BAD+DAC=DAC+CAE=90°,

∴∠BAD=CAE

AD=AEAB=AC,

∴△ABD≌△ACE,

CE=BD,∠B=ACE=45°,

∴∠ACB+ACE=45°+45°=90°,

∴∠BCE=90°,即CEBD;

故答案為:CE=BD,CEBD

2)①補(bǔ)全圖形,如圖:

CE=BDCEBD仍成立;

證明:∵ADAE

∴∠DAE=90°

∵∠BAC=90°

∴∠DAE1=BAC1

即∠2=3

AB=AC, AD=AE

∴△ADB≌△AEC

CE=BD,∠ACE=ABD

∵∠ABC=ACB=45°

∴∠ACE=ABD=135°

∴∠DCE=ACEACB=90°

CEBD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)、點(diǎn)與點(diǎn)是對應(yīng)點(diǎn),連接,且、在同一條直線上,則的長為(

A. 3 B. C. 4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為20cm,ABC=120°,對角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過點(diǎn)PPQBD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.

(1)設(shè)四邊形PQCB的面積為S,求St的關(guān)系式;

(2)若點(diǎn)Q關(guān)于O的對稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?

(3)直線PNAC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A0,5),B12,0),在y軸負(fù)半軸上取點(diǎn)E,使OAEO,作∠CEF=∠AEB,直線COBA的延長線于點(diǎn)D

1)根據(jù)題意,可求得OE   ;

2)求證:ADO≌△ECO;

3)動(dòng)點(diǎn)PE出發(fā)沿EOB路線運(yùn)動(dòng)速度為每秒1個(gè)單位,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)QB出發(fā)沿BOE運(yùn)動(dòng)速度為每秒3個(gè)單位,到E點(diǎn)處停止運(yùn)動(dòng).二者同時(shí)開始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PMCD于點(diǎn)M,QNCD于點(diǎn)N.問兩動(dòng)點(diǎn)運(yùn)動(dòng)多長時(shí)間OPMOQN全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的直角邊軸的正半軸上,點(diǎn)在第象限,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至,使點(diǎn)的對應(yīng)點(diǎn)落在軸的正半軸上,已知,

求點(diǎn)和點(diǎn)的坐標(biāo);

求經(jīng)過點(diǎn)和點(diǎn)的直線所對應(yīng)的一次函數(shù)解析式,并判斷點(diǎn)是否在直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組在樓的頂部處測得該樓正前方旗桿的頂端的俯角為,在樓的底部處測得旗桿的頂端的仰角為,已知旗桿的高度為,根據(jù)測得的數(shù)據(jù),計(jì)算樓的高度(結(jié)果保留整數(shù)).

參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=x2x3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D

(1)求出點(diǎn)A,B,D的坐標(biāo);

(2)如圖1,若線段OB在x軸上移動(dòng),且點(diǎn)O,B移動(dòng)后的對應(yīng)點(diǎn)為O,B.首尾順次連接點(diǎn)O、B、D、C構(gòu)成四邊形OBDC,請求出四邊形OBDC的周長最小值.

(3)如圖2,若點(diǎn)M是拋物線上一點(diǎn),點(diǎn)N在y軸上,連接CM、MN.當(dāng)CMN是以MN為直角邊的等腰直角三角形時(shí),直接寫出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點(diǎn)A1∠A1BC∠A1CD的平分線相交于點(diǎn)A2,依此類推,∠A4BC∠A4CD的平分線相交于點(diǎn)A5,∠A5的度數(shù)為(

A. 19.2° B. C. D.

查看答案和解析>>

同步練習(xí)冊答案