【題目】如圖,在△ABC 中,點(diǎn) D,E 分別在邊 AC,AB 上,BD 與 CE 交于點(diǎn) O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC 是等腰三角形?(用序號(hào)寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某;@球社團(tuán)決定購買運(yùn)動(dòng)裝備。經(jīng)了解,甲、乙兩家運(yùn)動(dòng)產(chǎn)品經(jīng)銷店以同樣的價(jià)格出售某種品牌的隊(duì)服和籃球,已知每套隊(duì)服比每個(gè)籃球多元,兩套隊(duì)服與三個(gè)籃球的費(fèi)用相等.經(jīng)洽談,甲店的優(yōu)惠方案是:每購買十套隊(duì)服,送一個(gè)籃球,乙店的優(yōu)惠方案是:若購買隊(duì)服超過套,則購買籃球打八折.
(1)求每套隊(duì)服和每個(gè)籃球的價(jià)格是多少?
(2)若籃球社團(tuán)購買套隊(duì)服和個(gè)籃球(是大于的整數(shù)),請用含的式子分別表示出到甲經(jīng)銷店和乙經(jīng)銷店購買裝備所花的費(fèi)用;
(3)在(2)的條件下,若,通過計(jì)算判斷到甲、乙哪家經(jīng)銷店購買更劃算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知線段AB=16cm,點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若點(diǎn)C恰為AB的中點(diǎn),求DE的長;
(2)若AC=6cm,求DE的長;
(3)試說明不論AC取何值(不超過16cm),DE的長不變;
(4)知識(shí)遷移:如圖2,已知∠AOB=130°,過角的內(nèi)部任一點(diǎn)C畫射線OC,若OD、OE分別平分∠AOC和∠BOC,試說明∠DOE=65°與射線OC的位置無關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們約定:如果身高在選定標(biāo)準(zhǔn)的±2%范圍之內(nèi)都稱為“普通身高”.為了了解某校九年級(jí)男生中具有“普遍身高”的人數(shù),我們從該校九年級(jí)男生中隨機(jī)抽出10名男生,分別測量出他們的身高(單位:cm),收集并整理如下統(tǒng)計(jì)表:
(1)計(jì)算這組數(shù)據(jù)的三個(gè)統(tǒng)計(jì)量:平均數(shù)、中位數(shù)、眾數(shù);
(2)請你選擇其中一個(gè)統(tǒng)計(jì)量作為選定標(biāo)準(zhǔn),找出這10名男生中具有“普遍身高”是哪幾位男生?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點(diǎn) A,BD⊥m 于點(diǎn) D,CE⊥m 于點(diǎn) E,求證:△ABD≌△CAE.
應(yīng)用:如圖②,在△ABC 中,AB=AC,D、A、E 三點(diǎn)都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D,E分別是AC,BC上的兩點(diǎn),且AD=CE,AE,BD相交于點(diǎn)N,則∠DNE的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為M的拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=BO=2,∠AOB=120°.
(1)求a,b的值;
(2)連結(jié)OM,求∠AOM的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com