【題目】小明在某個(gè)斜坡AB上,看到對面某高樓BC上方有一塊宣傳“中國國際進(jìn)口博覽會(huì)”的豎直標(biāo)語牌CD,小明在A點(diǎn)測得標(biāo)語牌頂端D處的仰角為42°,并且測得斜坡AB的坡度為i=1B、C、D在同一條直線上),已知斜坡AB20米,高樓高19米(即BC=19米),則標(biāo)語牌CD的長是( 。┟祝ńY(jié)果保留小數(shù)點(diǎn)后一位)

(參考數(shù)據(jù):sin42°≈0.67,cos42°=0.74,tan42°≈0.91.73

A.2.3B.3.8C.6.5D.6.6

【答案】D

【解析】

AEBDE.分別求出BE、DE,可得BD的長,再根據(jù)CD=BD-BC計(jì)算即可.

解:如圖,作AEBDE

∵斜坡AB的坡度為i=1,

tanABF,

∴∠ABF=30°,

AFAB20=10,

BFAF=10,

BE=AF=10,AE=BF=10

RtADE中,DE=AEtan42°≈10×1.73×0.9=15.57,∴BD=DE+BE15.57+10=25.57,

CD=BDBC=25.57196.6m),

答:標(biāo)語牌CD的長約為6.6m

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是通過折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過程如下:

第一步:如圖,先把正方形ABCD對折,折痕為MN;

第二步點(diǎn)E在線段MD上,將△ECD沿EC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP可得△BCP是等邊三角形

問題:在折疊過程中,可以得到PB=PC;依據(jù)是________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙二人走步晨練,兩人同時(shí)同地向距離600米的目標(biāo)出發(fā),二人所走的路程y(米)與所走的時(shí)間t(分)之間的函數(shù)關(guān)系如圖所示,下列說法:①甲走全程的平均速度為75/分:②第4分鐘時(shí),二人在途中相遇;③第2分鐘時(shí)甲在乙前面100米處;④乙比甲提前2.5分鐘到達(dá)終點(diǎn);其中正確的有( 。﹤(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全區(qū)3000名九年級(jí)學(xué)生英語聽力口語自動(dòng)化考試成績的情況,隨機(jī)抽取了部分學(xué)生的成績(滿分30分且得分均為整數(shù)),制成下表:

分?jǐn)?shù)段(x分分)

0≤x≤18

19≤x≤21

22≤x≤24

25≤x≤27

28≤x≤30

人數(shù)

10

15

35

112

128

1)填空:

本次抽樣調(diào)查共抽取了   名學(xué)生;

學(xué)生成績的中位數(shù)所在的分?jǐn)?shù)段是   ;

若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為0≤x≤18的人數(shù)所對應(yīng)扇形的圓心角為   °

2)如果將25分以上(含25分)定為優(yōu)秀,請估計(jì)全區(qū)九年級(jí)考生成績?yōu)閮?yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過BBDy軸,垂足為D,交OAC,若OC=CA

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD8,AB14,EDC上的一個(gè)點(diǎn),將△ADE沿AE折疊,使得點(diǎn)D落在D'處,若以C、B、D'為頂點(diǎn)的三角形是等腰三角形,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點(diǎn)為點(diǎn),與軸的負(fù)半軸交于點(diǎn),直線交拋物線W于另一點(diǎn),點(diǎn)的坐標(biāo)為

1)求直線的解析式;

2)過點(diǎn)軸,交軸于點(diǎn),若平分,求拋物線W的解析式;

3)若,將拋物線W向下平移個(gè)單位得到拋物線,如圖2,記拋物線的頂點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,與射線的交點(diǎn)為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)和一次函數(shù)ymx+n的圖象過格點(diǎn)(網(wǎng)格線的交點(diǎn))B、P

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)觀察圖象,直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍是:   

3)在圖中用直尺和2B鉛筆畫出兩個(gè)矩形(不寫畫法),要求每個(gè)矩形均需滿足下列兩個(gè)條件:

①四個(gè)頂點(diǎn)均在格點(diǎn)上,且其中兩個(gè)頂點(diǎn)分別是點(diǎn)O,點(diǎn)P

②矩形的面積等于k的值.

查看答案和解析>>

同步練習(xí)冊答案