【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限,兩點(diǎn),與坐標(biāo)軸交于、兩點(diǎn),連結(jié),.
(1)求與的函數(shù)解析式;
(2)將直線向上平移個(gè)單位到直線,此時(shí),直線上恰有一點(diǎn)滿足,,求的值.
【答案】(1), ;(2)
【解析】
(1)將代入,即可求得反比例函數(shù)的解析式;根據(jù)反比例函數(shù)的解析式可求得,利用待定系數(shù)法即可求得一次函數(shù)的解析式;
(2)根據(jù)兩點(diǎn)之間的距離公式求得的長(zhǎng),結(jié)合,,判斷得到四邊形是菱形,再求得點(diǎn)的坐標(biāo),利用待定系數(shù)法求得直線的解析式,從而求得答案.
(1)將代入,解得,
∴反比例函數(shù)解析式為,
將代入,解得
∴點(diǎn)的坐標(biāo)為:,
將,代入,得:
解得:,
∴一次函數(shù)解析是為,反比例函數(shù)解析式為;
(2)連接OG交AB于點(diǎn)E,連接GB,
∵直線A的解析式為:,交坐標(biāo)軸于點(diǎn)A(0,5),B(5,0) ,
∴,∠OBE=45,
∵,,
∴,
又∵,,
則四邊形是菱形,
∴AB垂直平分OG,
∴,∠OBE=∠GBE=45,
∴⊥軸,
∴點(diǎn)坐標(biāo)為 (5,5),
設(shè)平移后的直線為:,過(guò),
∴,
解得:,
∴,
∴點(diǎn)的坐標(biāo)為
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問(wèn)在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠設(shè)計(jì)了一款成本為20元件的工藝品投放市場(chǎng)進(jìn)行試銷,經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究發(fā)現(xiàn),每天銷售量y與單價(jià)x滿足一次函數(shù)關(guān)系,求出y與x的關(guān)系式;
(2)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)50元件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)8000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,軸,點(diǎn)、都在反比例函數(shù)上,點(diǎn)在反比例函數(shù)上,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長(zhǎng)分別為m、4m,D為AB的中點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、點(diǎn)D.
(1)當(dāng)m=1時(shí),求拋物線y=﹣x2+bx+c的函數(shù)關(guān)系式;
(2)延長(zhǎng)BC至點(diǎn)E,連接OE,若OD平分∠AOE,拋物線與線段CE相交,求拋物線的頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)?/span>(t+1)(t-1)=80,整理得t2-1=80,t2=81,
所以t=土9,因?yàn)?/span>2m2+n2>0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個(gè)整休,并用新字母代替(即換元),則能使復(fù)雜的問(wèn)題簡(jiǎn)單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問(wèn)題,并寫(xiě)出解答過(guò)程.
(1)已知實(shí)數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過(guò)點(diǎn)C作⊙O的切線BC,E是BC的中點(diǎn),AB交⊙O于D點(diǎn).
(1)直接寫(xiě)出ED和EC的數(shù)量關(guān)系:_________;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說(shuō)明理由;
(3)填空:當(dāng)BC=_______時(shí),四邊形AOED是平行四邊形,同時(shí)以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com