【題目】如圖,從熱氣球C處測得地面A、B兩點的俯角分別為45°、30°,如果此時熱氣球C處離地面的高度CD為100米,且點A、D、B在同一直線上,求AB兩點間的距離(結(jié)果保留根號)

【答案】AB兩點的距離是100+1)米.

【解析】試題分析:先根據(jù)從熱氣球C處測得地面A、B兩點的俯角分別為30°、45°可求出∠BCD∠ACD的度數(shù),再由直角三角形的性質(zhì)求出ADBD的長,根據(jù)AB=AD+BD即可得出結(jié)論.

試題解析:從熱氣球C處測得地面AB兩點的俯角分別為30°、45°,

∴∠BCD=90°﹣45°=45°,∠ACD=90°﹣30°=60°,

∵CD⊥AB,CD=100,

∴△BCD是等腰直角三角形,

∴BD=CD=100,

Rt△ACD,

∵CD=100,∠ACD=60°,

AD=CDtan60°=100×=100(米),

AB=AD+BD=100+100=100+1)米.

答:AB兩點的距離是100+1)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程兩實數(shù)根和為﹣4的是( )

A. x2+2x﹣4=0 B. x2﹣4x+4=0 C. x2+4x+10=0 D. x2+4x﹣5=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為正方形ABCDAB上的一點,且AB=3,BE=1.將△CBE翻折得到△CB'E,連接并延長DB'與CE延長線相交于點F,連接AF,則AF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在梯形ABCD中,AD∥BC,∠B+∠C=90°,AB=5,CD=12,M,N分別為AD,BC的中點,則線段MN=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2﹣(m+3)x+m2﹣12與x軸交于A(x1,0)、B(x2,0)兩點,且x1<0,x2>0,拋物線與y軸交于點C,OB=2OA.

(1)求拋物線解析式;

(2)已知直線y=x+2與拋物線相交于M、N兩點,分別過M、N作x軸的垂線,垂足為M1、N1,是否存在點P,同時滿足如下兩個條件:

①P為拋物線上的點,且在直線MN上方;

:=6:35

若存在,則求點P橫坐標(biāo)t,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因之一,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速,如圖,觀測點設(shè)在A處,距離大路(BC)為30米,一輛小轎車由西向東勻速行駛,測得此車從B處到C處所用的時間為5秒,∠BAC=60°

1)求B、C兩點間的距離.

2)請判斷此車是否超過了BC路段限速40千米/小時的速度.(參考數(shù)據(jù):≈1732,≈1414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,四邊形DEGF為正方形,D、E在線段AC、BC上,F、GAB上,如果SADF=SCDE=1,SBEG=3,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了能以更新、更綠、更潔、更寧的城市形象迎接2011年大運會的召開,深圳市全面實施市容市貌環(huán)境提升行動.某工程隊承擔(dān)了一段長為1500米的道路綠化工程,施工時有兩張綠化方案:甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.現(xiàn)要求按照乙方案綠化道路的總長度不能少于按甲方案綠化道路的總長度的2.

1)求A型花和B型花每枝的成本分別是多少元?

2)求當(dāng)按甲方案綠化的道路總長度為多少米時,所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點,

(1)求證:AC2=ABAD;

(2)求證:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

同步練習(xí)冊答案