【題目】如圖在平行四邊形ABCD中,∠ABC=60°,AB=4,四條內(nèi)角平分線圍成四邊形EFGH面積為,則平行四邊形ABCD面積為________
【答案】
【解析】
先證明四邊形EFGH為矩形,再利用矩形的面積計(jì)算出EG的長(zhǎng),從而進(jìn)一步計(jì)算平行四邊形ABCD的面積.
延長(zhǎng)AF交BC于點(diǎn)M,過(guò)點(diǎn)A作AN⊥BC于點(diǎn)N,連接EG
∵四邊形ABCD是平行四邊形
∴AD∥BC
又∵∠ABC=60°
∴∠BAD=180°-60°=120°
又∵BH、AF分別平分∠ABC、∠BAD
∴∠ABH=,∠BAE=
∴∠HEF=∠AEB=
同理,∠H=∠HGF=90°
在四邊形EFGH中,∠H=∠HEF=∠HGF=90°
∴四邊形EFGH為矩形
在△ABM中,∠ABM=∠BAM=60°
∴△ABM為等邊三角形
又∵BE平分∠ABM,AB=4
∴
同理可得,
∴
∵四邊形EFGH為矩形
∴EM∥CG
∵且EM∥CG
∴四邊形EMCG為平行四邊形
∴EG∥CM
∴∠HEG=∠HBC=30°
∴
不妨設(shè)HG=a,EG=2a,
則由勾股定理可得
∵四邊形EFGH面積為
∴
∴
∴CM=EG=2a=2
在Rt△ABN中,∠ABN=60°, ∠ANB=90°,AB=4
∴,
∴
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開(kāi)了光譜奧妙的大門(mén).請(qǐng)你根據(jù)這個(gè)規(guī)律寫(xiě)出第9個(gè)數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)A、B兩種新型節(jié)能臺(tái)燈,已知B型節(jié)能臺(tái)燈每盞進(jìn)價(jià)比A型的多40元,且用3000元購(gòu)進(jìn)的A型節(jié)能臺(tái)燈與用5000元購(gòu)進(jìn)的B型節(jié)能臺(tái)燈的數(shù)量相同.
(1)求每盞A型節(jié)能臺(tái)燈的進(jìn)價(jià)是多少元?
(2)商場(chǎng)將購(gòu)進(jìn)A、B兩型節(jié)能臺(tái)燈100盞進(jìn)行銷(xiāo)售,A型節(jié)能臺(tái)燈每盞的售價(jià)為90元,B型節(jié)能臺(tái)燈每盞的售價(jià)為140元,且B型節(jié)能臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)A型節(jié)能臺(tái)燈數(shù)量的2倍.應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷(xiāo)售完這批臺(tái)燈時(shí)利最多?此時(shí)利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)前小明花1200元從市場(chǎng)購(gòu)進(jìn)批發(fā)價(jià)分別為每箱30元與50元的、兩種水果進(jìn)行銷(xiāo)售,分別以每箱35元與60元的價(jià)格出售,設(shè)購(gòu)進(jìn)水果箱,水果箱.
(1)求關(guān)于的函數(shù)表達(dá)式;
(2)若要求購(gòu)進(jìn)水果的數(shù)量不少于水果的數(shù)量,則應(yīng)該如何分配購(gòu)進(jìn)、水果的數(shù)量并全部售出才能獲得最大利潤(rùn),此時(shí)最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小敏在測(cè)量學(xué)校一幢教學(xué)樓AB的高度時(shí),她先在點(diǎn)C測(cè)得教學(xué)樓的頂部A的仰角為30°,然后向教學(xué)樓前進(jìn)12米到達(dá)點(diǎn)D,又測(cè)得點(diǎn)A的仰角為45°.請(qǐng)你根據(jù)這些數(shù)據(jù),求出這幢教學(xué)樓AB的高度.
(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)學(xué)初,李芳和王平去文具店購(gòu)買(mǎi)學(xué)習(xí)用品,李芳用18元錢(qián)買(mǎi)了1支鋼筆和3本筆記本;王平用30元買(mǎi)了同樣的鋼筆2支和筆記本4本.
(1)求每支鋼筆和每本筆記本的價(jià)格;
(2)校運(yùn)會(huì)后,班主任拿出200元學(xué)校獎(jiǎng)勵(lì)基金交給班長(zhǎng),購(gòu)買(mǎi)上述價(jià)格的鋼筆筆記本共36件作為獎(jiǎng)品,獎(jiǎng)給校運(yùn)會(huì)中表現(xiàn)突出的同學(xué),要求筆記本數(shù)不多于鋼筆數(shù)的2倍,共有多少種購(gòu)買(mǎi)方案?請(qǐng)你一一寫(xiě)出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=的圖象上,當(dāng)-3≤x≤-1時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎疫情期間,某小區(qū)計(jì)劃購(gòu)買(mǎi)甲、乙兩種品牌的消毒劑,乙品牌消毒劑每瓶的價(jià)格比甲品牌消毒劑每瓶?jī)r(jià)格的3倍少50元,已知用300元購(gòu)買(mǎi)甲品牌消毒劑的數(shù)量與用400元購(gòu)買(mǎi)乙品牌消毒劑的數(shù)量相同.
(1)求甲、乙兩種品牌消毒劑每瓶的價(jià)格各是多少元?
(2)若該小區(qū)從超市一次性購(gòu)買(mǎi)甲、乙兩種品牌的消毒劑共40瓶,且甲種數(shù)量不超過(guò)乙種的2倍,則如何購(gòu)買(mǎi)總費(fèi)用最低?最低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方形ABCD中,,,點(diǎn)P從A開(kāi)始沿邊AB向終點(diǎn)B以的速度移動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向終點(diǎn)C以的速度移動(dòng),如果P,Q分別從A,B同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)停止運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為t秒.
填空:________,________用含t的代數(shù)式表示:
當(dāng)t為何值時(shí),PQ的長(zhǎng)度等于5cm?
是否存在t的值,使得五邊形APQCD的面積等于?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com