【題目】在數(shù)學課上,老師提出如下問題:尺規(guī)作圖:確定圖1所在圓的圓心.

已知:

求作:所在圓的圓心

曈曈的作法如下:如圖2

1)在上任意取一點,分別連接,;

2)分別作弦的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.

老師說:曈曈的作法正確.

請你回答:曈曈的作圖依據(jù)是_____

【答案】①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)

【解析】

1)在上任意取一點,分別連接,

2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.

解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:,

所以點所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)

故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小華同學對圖形旋轉(zhuǎn)前后的線段之間、角之間的關系進行了拓展探究.

(一)猜測探究

在△ABC中,ABAC,M是平面內(nèi)任意一點,將線段AM繞點A按順時針方向旋轉(zhuǎn)與∠BAC相等的角度,得到線段AN,連接NB

1)如圖1,若M是線段BC上的任意一點,請直接寫出∠NAB與∠MAC的數(shù)量關系是_______,NBMC的數(shù)量關系是_______;

2)如圖2,點EAB延長線上點,若M是∠CBE內(nèi)部射線BD上任意一點,連接MC,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由。

(二)拓展應用

如圖3,在△A1B1C1中,A1B18,∠A1B1C190°,∠C130°,PB1C1上的任意點,連接A1P,將A1P繞點A1按順時針方向旅轉(zhuǎn)60°,得到線段A1Q,連接B1Q.求線段B1Q長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D﹣12),與x軸的一個交點A在點(﹣3,0)和(﹣20)之間,其部分圖象如圖,則以下結論:①b2﹣4ac0;②當x﹣1時,yx增大而減小;③a+b+c0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m2; 3a+c0.其中正確結論的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤.通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低1元,每天可多售出200斤.為了保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是    (用含x的代數(shù)式表示)

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,直線MN⊙OA,B兩點,AC是直徑,AD平分∠CAM⊙OD,過DDE⊥MNE

1)求證:DE⊙O的切線;

2)若DE=6cmAE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,邊的中線,,連結,點在射線上(與,不重合)

1)如果

①如圖1   

②如圖2,點在線段上,連結,將線段繞點逆時針旋轉(zhuǎn),得到線段,連結,補全圖2猜想、之間的數(shù)量關系,并證明你的結論;

2)如圖3,若點在線段 的延長線上,且span>,連結,將線段繞點逆時針旋轉(zhuǎn)得到線段,連結,請直接寫出、三者的數(shù)量關系(不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,每個小正方形的邊長均為1,則下列A、B、C、D四個圖中的三角形(陰影部分)與△EFG相似的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點DDEBCAB于點E,DFABBC于點F

⑴求證:四邊形BEDF為菱形;

⑵如果∠A100°,C30°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°BD平分∠ABC,交ACDDEABE,EFACF。

(1)求證:EDFADE

(2)猜想:線段DC、DFDA之間存在什么關系?并說明理由。

查看答案和解析>>

同步練習冊答案