【題目】如圖,完全相同的兩個菱形ABCD和ECGF的頂點C重合,∠B=∠F,點E恰好在邊AD上,延長ED交FG于點H.
(1)求證:∠B=∠ECB;
(2)連接BE、CH.
①試判斷四邊形BEHC的形狀,并說理理由;
②求證:CH平分∠DCG.
【答案】(1)證明見解析,(2)①四邊形BEHC是平行四邊形,理由見解析,②證明見解析.
【解析】
(1)過A作ANBC于N,作EMBC于M,利用菱形的性質(zhì),證明即可得到結(jié)論,
(2)①利用菱形的性質(zhì)與∠B=∠F,證明 即可得到結(jié)論,
②延長BC交FG的延長線于K,證明四邊形是菱形,再證明利用菱形的性質(zhì)證明再利用三角形的內(nèi)角和可得結(jié)論.
證明:(1)如圖,過A作ANBC于N,作EMBC于M,
完全相同的兩個菱形ABCD和ECGF,
(2)①四邊形BEHC是平行四邊形,理由如下:
如圖,連接BE,CH,
完全相同的兩個菱形ABCD和ECGF,
四邊形BEHC是平行四邊形
②如圖,延長BC交FG的延長線于K,
四邊形是平行四邊形,
四邊形是菱形,
完全相同的兩個菱形ABCD和ECGF,
平分
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個數(shù)是(。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下所示兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息,解答下列問題:
(1)本次調(diào)研活動共調(diào)研了 名學(xué)生,表示“QQ”的扇形圓心角的度數(shù)是 度.
(2)請你補充完整條形統(tǒng)計圖;
(3)如果該校有2500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在相鄰兩點距離為1的點陣紙上(左右相鄰或上下相鄰的兩點之間的距離都是1個單位長度),三個頂點都在點陣上的三角形叫做點陣三角形,請按要求完成下列操作:
(1)將點陣△ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,畫出平移后的△A1B1C1;
(2)連接AA1、BB1,則線段AA1、BB1的位置關(guān)系為 、數(shù)量關(guān)系為 .估計線段AA1的長度大約在 <AA1< 單位長度:(填寫兩個相鄰整數(shù));
(3)畫出△ABC邊AB上的高CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海市水務(wù)局對某小區(qū)居民生活用水情況進行了調(diào)査.隨機抽取部分家庭進行統(tǒng)計,繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請根據(jù)圖表,解答下列問題:
月均用水量(單位:噸 | 頻數(shù) | 頻率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合計 | d | 1.00 |
(1)b= ,c= ,并補全頻數(shù)分布直方圖;
(2)為鼓勵節(jié)約用水用水,現(xiàn)要確定一個用水量標(biāo)準P(單位:噸),超過這個標(biāo)準的部分按1.5倍的價格收費,若要使60%的家庭水費支出不受影響,則這個用水量標(biāo)準P= 噸;
(3)根據(jù)該樣本,請估計該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“家電下鄉(xiāng)”的惠農(nóng)政策,某商場決定從廠家購進甲、乙、丙三種不同型號的電冰箱80臺,其中甲種電冰箱的臺數(shù)是乙種電冰箱臺數(shù)的2倍,購買三種電冰箱的總金額不超過132 000元.已知甲、乙、丙三種電冰箱的出廠價格分別為:1 200元/臺、1 600元/臺、2 000元/臺
(1)至少購進乙種電冰箱多少臺?
(2)若要求甲種電冰箱的臺數(shù)不超過丙種電冰箱的臺數(shù),則有哪些購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,
求證:∠3=∠B
證明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 內(nèi)錯角相等,兩直線平行)
∴EF∥_____ ( )
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個函數(shù)y與自變量x的部分對應(yīng)值如下表:
(1)從我們已學(xué)過的函數(shù)判斷:y是x的 函數(shù),y與x的函數(shù)關(guān)系式為 ;
(2)根據(jù)函數(shù)圖像,當(dāng)-2 x -時,求y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com