【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:

在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí), 我們稱之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為真分式”.

例如:像 ,這樣的分式是假分式;像,這樣

的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式.

解決下列問題:

1)將分式 化為整式與真分式的和的形式為: .(直接寫出結(jié)果即可)

2)如果的值為整數(shù),求x的整數(shù)值.

【答案】1;(2-4,-2,0-6

【解析】

1)根據(jù)題意把分式化為整式與真分式的和的形式即可;

2)根據(jù)題中所給出的例子把原式化為整式與真分式的和形式,再根據(jù)分式的值為整數(shù)即可得出x的值.

1=

故填:;

2

∴x的取值可以是-4,-2,0,-6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)求出ABC的面積;

2)在圖形中作出ABC關(guān)于x軸的對(duì)稱圖形A1B1C1,寫出點(diǎn)A1B1,C1的坐標(biāo);

3)點(diǎn)Py軸上,使PB+PC的長(zhǎng)最小,請(qǐng)?jiān)?/span>y軸上標(biāo)出點(diǎn)P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,點(diǎn)在線段上運(yùn)動(dòng)(不與、重合),連接,作,交線段于點(diǎn).

1)若,證明:;

2)在點(diǎn)的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出的度數(shù);若不可以,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,直線y=﹣x+6分別與x軸、y軸交于A、B兩點(diǎn);直線y=xAB交于點(diǎn)C,與過點(diǎn)A且平行于y軸的直線交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿x軸向左運(yùn)動(dòng).過點(diǎn)Ex軸的垂線,分別交直線AB、ODPQ兩點(diǎn),以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN△ACD重疊部分(陰影部分)的面積為S(平方單位),點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).

1)求點(diǎn)C的坐標(biāo).

2)當(dāng)0t5時(shí),求St之間的函數(shù)關(guān)系式,并求S的最大值。

3)當(dāng)t0時(shí),直接寫出點(diǎn)(5,3)在正方形PQMN內(nèi)部時(shí)t的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析式為,且軸交于點(diǎn)D,直線經(jīng)過點(diǎn)、,直線、交于點(diǎn)C.

(1)求直線的解析表達(dá)式;

(2)求的面積;

(3)在直線上存在異于點(diǎn)C的另一點(diǎn)P,使得的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.

(1)求證:DE=CE.

(2)若∠CDE=35°,求∠A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊(duì)在我市實(shí)施棚戶區(qū)改造過程中承包了一項(xiàng)拆遷工程.原計(jì)劃每天拆遷,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了.從第二天開始,該工程隊(duì)加快了拆遷速度,第三天拆遷了.求:

該工程隊(duì)第一天拆遷的面積;

若該工程隊(duì)第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用我們學(xué)過的知識(shí),可以得出下面這個(gè)優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美.

.請(qǐng)你證明這個(gè)等式;

.如果,請(qǐng)你求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長(zhǎng)35米,寬20米的長(zhǎng)方形場(chǎng)地上,修建若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校學(xué)生參與方案設(shè)計(jì),現(xiàn)有3位同學(xué)各設(shè)計(jì)了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請(qǐng)你根據(jù)這一問題,在每種方案中都只列出方程不解.

①甲方案設(shè)計(jì)圖紙為圖l,設(shè)計(jì)草坪的總面積為600平方米.

②乙方案設(shè)計(jì)圖紙為圖2,設(shè)計(jì)草坪的總面積為600平方米.

③丙方案設(shè)計(jì)圖紙為圖3,設(shè)計(jì)草坪的總面積為540平方米.

查看答案和解析>>

同步練習(xí)冊(cè)答案