【題目】已知∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,
(1)連接CD、BD,求證:△CDF≌△BDE;
(2)若AE=5,AC=3,求BE的長.
【答案】(1)證明見解析;(2)2.
【解析】
(1)連CD、BD,如圖,根據(jù)角平行線的性質(zhì)定理得到DE=DF,根據(jù)線段垂直平分線的性質(zhì)得CD=BD,則可利用“HL“證明Rt△CDF≌Rt△BDE;
(2)先證明Rt△ADF≌Rt△ADE得到AE=AF,再由Rt△CDF≌Rt△BDE得出BE=CF,進而解答即可.
證明:(1)如圖,連接CD、BD,
∵AD平分∠BAE,DE⊥AB,DF⊥AC,
∴DE=DF,
又∵DG垂直平分BC,
∴CD=BD,
在Rt△CDF和Rt△BDE中
∵,
∴Rt△CDF≌Rt△BDE(HL),
(2)在Rt△ADF和Rt△ADE中
∵,
∴Rt△ADF≌Rt△ADE(HL),
∴AE=AF,
∵Rt△CDF≌Rt△BDE,
∴BE=CF,
∵CF=AF﹣AC=5﹣3=2,
∴BE=2.
科目:初中數(shù)學 來源: 題型:
【題目】 端午節(jié)期間,小明一家自駕游去了離家200的某地,如下圖是他們離家的距離與汽車行駛時間之間的函數(shù)圖象. 根據(jù)圖象解答下列問題:
(1)點的實際意義;
(2)求出線段的函數(shù)表達式;
(3)他們出發(fā)2.3時,距目的地還有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=ax2(a≠0)與直線y=2x-3交于點A(1,b),求:
(1)a和b的值;
(2)求拋物線y=ax2的頂點和對稱軸;
(3)x取何值時,二次函數(shù)y=ax2中的y隨x的增大而增大;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對應點,不寫畫法)
(2)直接寫出A′B′C′三點的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(2,3),B(6,3),連接AB,如果點P在直線y=x﹣1上,且點P到直線AB的距離小于1,那么稱點P是線段AB的“臨近點”,則下列點為AB的“臨近點”的是( 。
A.(,)B.(3,3)C.(6,5)D.(1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l:y=kx+1與拋物線y=x2-4x
(1)求證:直線l與該拋物線總有兩個交點;
(2)設(shè)直線l與該拋物線兩交點為A,B,O為原點,當k=-2時,求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點E是BC邊的中點,動點M在CD邊上運動,以EM為折痕將△CEM折疊得到△PEM,聯(lián)接PA,若AB=4,∠BAD=60°,則PA的最小值是( )
A. B. 2 C. 2﹣2 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com