【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5)、(﹣1,3).
(1)請在圖中正確作出平面直角坐標(biāo)系;
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)點(diǎn)B′的坐標(biāo)為 ,△A′B′C′的面積為 .
【答案】(1)答案見解析;(2)答案見解析;(3)(2,1),4
【解析】試題分析: (1)根據(jù)點(diǎn)A、C的坐標(biāo)作出直角坐標(biāo)系;
(2)分別作出點(diǎn)A、B、C關(guān)于y軸對稱的點(diǎn),然后順次連接;
(3)根據(jù)直角坐標(biāo)系的特點(diǎn)寫出點(diǎn)B'de坐標(biāo),求出面積.
試題解析: (1)(2)所作圖形如圖所示:
(3)點(diǎn)B′的坐標(biāo)為(2,1),
△A′B′C′的面積=3×412×2×412×2×112×2×3=4.
故答案為:(2,1),4.
點(diǎn)睛: 本題考查了根據(jù)軸對稱變換作圖,解答本題的關(guān)鍵是根據(jù)網(wǎng)格結(jié)構(gòu)作出點(diǎn)A、B、C的對應(yīng)點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作試驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組線段的長為邊,能組成三角形的是( )
A.3cm,6cm,8cmB.3cm,2cm,6cmC.5cm,6cm,11cmD.2cm,7cm,4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF.
如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF.
如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是鈍角,請你證明:△ABC≌△DEF(提示:過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H).
第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請你利用圖③,在圖③中用尺規(guī)作出△DEF,使△DEF和△ABC不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個商店把iPad按標(biāo)價的九折出售,仍可獲利20%,若該iPad的進(jìn)價是2400元,則ipad標(biāo)價是( )
A.3200元
B.3429元
C.2667元
D.3168元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于點(diǎn)E.
求證:AD+DE=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將A(1,1)先向左平移2個單位,再向下平移2個單位得點(diǎn)B,則點(diǎn)B的坐標(biāo)是( 。
A.(-1,-1)B.(3,3)C.(0,0)D.(-1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)如圖1,在四邊形ABCD中添加一個條件使得四邊形ABCD是“等鄰邊四邊形”.請寫出你添加的一個條件.
(2)問題探究
小紅提出了一個猜想:對角線互相平分且相等的“等鄰邊四邊形”是正方形.她的猜想正確嗎?請說明理由.
(3)如圖2,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD為對角線,AC= AB.試探究線段BC,CD,BD之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com