【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列4個結論:①abc0;②2a+b0;③4a+2b+c0;④b24ac0;其中正確的結論的個數(shù)是( 。

A.1B.2C.3D.4

【答案】D

【解析】

根據二次函數(shù)yax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定解答.

①由拋物線的對稱軸可知:﹣0,

ab0,

∵拋物線與y軸的交點在正半軸上,

c0

abc0,故①正確;

②∵﹣1,

b=﹣2a

2a+b0,故②正確.

③∵(0,c)關于直線x1的對稱點為(2,c),

x0時,yc0

x2時,yc0

y4a+2b+c0,故③正確;

④由圖象可知:0

b24ac0,故②正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙OAB為直徑,作ODABAC于點D,延長BCOD交于點F,過點C作⊙O的切線CE,交OF于點E

1)求證:ECED

2)如果OA4,EF3,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為,四邊形ABCD為⊙O的內接矩形,AD=6,MDC中點,E為⊙O上的一個動點,連結DE,作DFDE交射線EAF,連結MF,則MF的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC和BD交于點O,分別過點C、D作CE∥BD,DE∥AC,CE和DE交于點E.

(1)求證:四邊形ODEC是矩形;

(2)當∠ADB=60°,AD=2時,求sin∠AED的值,求∠EAD的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PBx軸于點B,點A與點B關于y軸對稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點C為線段AP的中點;

(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形,如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰三角形,,點上一點,過點于點,交延長線于點

1)證明:是等腰三角形;

2)若,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,ABBC于點B,底座BC1.3米,底座BC與支架AC所成的角∠ACB60°,點H在支架AF上,籃板底部支架EHBCEFEH于點E,已知AH米,HF米,HE1米.

1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).

2)求籃板底部點E到地面的距離,(精確到0.01米)(參考數(shù)據:≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F分別為正方形ABCD的邊ABBC的中點,AFDE交于點M,則下列結論:①∠AME=90°;②∠BAF=EDB;③MD=2AM=4EM;④AM=MF.其中正確結論的個數(shù)是(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案