分析 (1)根據(jù)條件可得∠BAC=∠DCA,AE=CF,加上∠1=∠2可證明△ABE≌△CDF,進(jìn)而可得AB=CD,可利用SAS判定△ABC≌△CDA,可得BC=AD,∠DAF=∠FCD,然后可得△AFD≌△CEB;
(2)根據(jù)條件AB∥CD可得∠BAC=∠DCA,根據(jù)等式的性質(zhì)可得AE=CF,加上∠1=∠2可證明△ABE≌△CDF.
解答 解:(1)△AFD≌△CEB,△ABC≌△CDA,△ABE≌△CDF;
(2)理由:∵AB∥CD,
∴∠BAC=∠DCA,
∵AF=CE,
∴AF+EF=EC+EF,
∴AE=CF,
在△ABE和△CDF中{∠1=∠2∠BAE=∠DCFAE=CF,
∴△ABE≌△CDF(AAS).
∵△ABE≌△CDF,
∴AB=DC,
∵AB∥DC,
∴∠BAC=∠DCA,
∴在△ABC和△CDA中
{AB=DC∠BAC=∠ACDAC=AC,
∴△ABC≌△CDA(SAS);
∵△ABC≌△CDA,
∴AD=BC,∠DAC=∠BCE,
在△AFD和△CEB中
{AD=BC∠DAF=∠ECBAF=EC,
∴△AFD≌△CEB(SAS).
點(diǎn)評(píng) 本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.58×105 | B. | 12.3×107 | C. | 12×103 | D. | 8.0×108 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 幾個(gè)有理數(shù)相乘,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí)積為負(fù) | |
B. | 近似數(shù)3.0萬精確到千位 | |
C. | 一個(gè)數(shù)的平方一定小于這個(gè)數(shù) | |
D. | 若|a|=-a,則a<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com