【題目】如圖,在中,,,與軸交于點(diǎn),,點(diǎn)在反比例函數(shù)的圖象上,且軸平分,求_____.
【答案】
【解析】
要求k的值,通常可求A的坐標(biāo),可作x軸的垂線,構(gòu)造相似三角形,利用CD=4AD和C(0,-4)可以求出A的縱坐標(biāo),再利用三角形相似,設(shè)未知數(shù),由相似三角形對應(yīng)邊成比例,列出方程,求出待定未知數(shù),從而確定點(diǎn)A的坐標(biāo),進(jìn)而確定k的值.
解:過A作AE⊥x軸,垂足為E,
∵C(0,-4),
∴OC=4,
∵∠AED=∠COD=90°,∠ADE=∠CDO
∴△ADE∽△CDO,
,
∴AE=1;
又∵y軸平分∠ACB,CO⊥BD,
∴BO=OD,
∵∠ABC=90°,
∴∠OCD=∠DAE=∠ABE=∠BCE,
∵∠DOC=∠ADE=90°
∴△ABE~△COD,
∴
設(shè)DE=n,則BO=OD=4n,BE=9n,
∴,
∴,
∴OE=5n=,
故點(diǎn)A(,1),
∴k=×1=
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點(diǎn)的切線與OC的延長線交于點(diǎn)D,∠B=30°,OH=5.請求出:
(1)∠AOC的度數(shù);
(2)△OAC的面積;
(3)線段AD的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.
(I)計算的值等于____________;
(Ⅱ)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為一邊、面積等于的矩形,并簡要說明畫圖方法(不要求證明)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( 。
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=,cos∠ACH=,點(diǎn)B的坐標(biāo)為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市有,兩種型號的瓶子,其容量和價格如表,小張買瓶子用來分裝15升油(瓶子都裝滿,且無剩油);當(dāng)日促銷活動:購買型瓶3個或以上,一次性返還現(xiàn)金5元,設(shè)購買型瓶(個),所需總費(fèi)用為(元),則下列說法不一定成立的是( )
型號 | A | B |
單個盒子容量(升) | 2 | 3 |
單價(元) | 5 | 6 |
A.購買型瓶的個數(shù)是為正整數(shù)時的值B.購買型瓶最多為6個
C.與之間的函數(shù)關(guān)系式為D.小張買瓶子的最少費(fèi)用是28元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形中,,.動點(diǎn)從點(diǎn)出發(fā),沿邊以每秒1個單位長度的速度運(yùn)動到點(diǎn)時停止,連接,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接,,設(shè)運(yùn)動時間為(秒).
(1)菱形對角線的長為 ;
(2)當(dāng)點(diǎn)恰在上時,求t的值;
(3)當(dāng)時,求的周長;
(4)直接寫出在整個運(yùn)動過程中,點(diǎn)運(yùn)動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店銷售甲、乙兩種圓規(guī),當(dāng)銷售5只甲種、1只乙種圓規(guī),可獲利潤25元,銷售6只甲種、3只乙種圓規(guī),可獲利潤39元.
(1)問該文具店銷售甲、乙兩種圓規(guī),每只的利潤分別是多少元?
(2)在(1)中,文具店共銷售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤P與a的函數(shù)關(guān)系式,并求當(dāng)a≥30時P的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是線段上一點(diǎn),,以點(diǎn)為圓心,的長為半徑作⊙,過點(diǎn)作的垂線交⊙于,兩點(diǎn),點(diǎn)在線段的延長線上,連接交⊙于點(diǎn),以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com