【題目】如圖,梯形中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點O為圓心的圓經(jīng)過A、D兩點,且,圓心O到弦AD的距離是____cm.
【答案】.
【解析】試題分析:如圖,作AE⊥CD,垂足為E,OF⊥AD,垂足為F,
則四邊形AECB是矩形,
CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,
∵∠AOD=90°,AO=OD,
所以△AOD是等腰直角三角形,
AO=OD,∠OAD=∠ADO=45°,BO=CD,
∵AB∥CD,
∴∠BAD+∠ADC=180°
∴∠ODC+∠OAB=90°,
∵∠ODC+∠DOC=90°,
∴∠DOC=∠BAO,
∵∠B=∠C=90°
∴△ABO≌△OCD,
∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,
由勾股定理知,AD2=AE2+DE2,
得AD=2cm,
∴AO=OD=2cm,
S△AOD=AODO=ADOF,
∴OF=cm.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點的俯角分別為60°和35°,已知大橋BC的長度為100m,且與地面在同一水平面上.求熱氣球離地面的高度.
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈ , ≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學探究課上,老師出示了這樣的探究問題,請你一起來探究:
已知:C是線段AB所在平面內(nèi)任意一點,分別以AC,BC為邊,在AB同側(cè)作等邊三角形ACE和BCD,聯(lián)結(jié)AD,BE交于點P.
(1)如圖1,當點C在線段AB上移動時,線段AD與BE的數(shù)量關(guān)系是: .
(2)如圖2,當點C在直線AB外,且∠ACB<120°,上面的結(jié)論是否還成立?若成立請證明,不成立說明理由.
(3)在(2)的條件下,∠APE的大小是否隨著∠ACB的大小的變化而發(fā)生變化,若變化,寫出變化規(guī)律,若不變,請求出∠APE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F, , .
(1)求∠BOC的度數(shù);
(2)求∠EDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定,“中小學生每天在校體育鍛煉時間不小于小時”,某地區(qū)就“每天在校體育鍛煉時間”的問題隨機調(diào)查了若干名中學生,根據(jù)調(diào)查結(jié)果制作如下統(tǒng)計圖(不完整).其中分組情況:組:時間小于小時;組:時間大于等于小時且小于小時;組:時間大于等于小時且小于小時;組:時間大于等于小時.
根據(jù)以上信息,回答下列問題:
()補全條形統(tǒng)計圖和扇形統(tǒng)計圖.
()本次調(diào)查數(shù)據(jù)的中位數(shù)落在__________組.
()根據(jù)統(tǒng)計數(shù)據(jù)估計該地區(qū)名中學生中,達到國家規(guī)定的每天在校體育鍛煉時間的人數(shù)約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com