【題目】已知△ABC是等邊三角形,點(diǎn)D,E分別在直線BCAC.

(1)如圖1,當(dāng)BD=CE時(shí),連接ADBE交于點(diǎn)P,則線段ADBE的數(shù)量關(guān)系是____________;APE的度數(shù)是_______________;

(2)如圖2,若“BD=CE”不變,ADEB的延長(zhǎng)線交于點(diǎn)P,那么(1)中的兩個(gè)結(jié)論是否仍然成立?請(qǐng)說明理由.

(3)如圖3,若AE=BD,連接DEAB邊交于點(diǎn)M,求證:點(diǎn)MDE的中點(diǎn).

【答案】1ADBE;∠APE60°;(2)成立,理由見解析;(3)見解析

【解析】

1)利用等邊三角形的性質(zhì)和SAS可證△ABD≌△BCE,可得AD=BE,∠BAD=CBE,進(jìn)一步即可求出∠APE的度數(shù);

2)同(1)的思路可證△ABD≌△BCE,從而可得AD=BE,∠BAD=CBE,再利用角的轉(zhuǎn)化和三角形的內(nèi)角和即可求出∠APE的度數(shù),進(jìn)而可得結(jié)論;

3)如圖3,過點(diǎn)EEFBCAB于點(diǎn)F,易得△AEF是等邊三角形,再利用AAS證明△MEF≌△MDB,問題即得解決.

解:(1ADBE;∠APE60°.

理由是:如圖1,∵△ABC是等邊三角形,

AB=BC,∠ABC=C=60°,

BD=CE

∴△ABD≌△BCESAS),

AD=BE,∠BAD=CBE,

又∵∠APE=BAD+ABE

∴∠APE=CBE+ABE=ABC=60°;

2)結(jié)論:ADBE,∠APE60°”仍然成立.

理由如下:如圖2,∵△ABC是等邊三角形,

ABBC,∠ABC=ACB60°,

∴∠ABD=BCE120°,

BDCE

∴△ABD≌△BCE(SAS),

ADBE,∠BAD=CBE

∵∠ABP+CBE180°-∠ABC120°,

∴∠ABP+BAD120°

∴∠APE180°120°60°.

3)證明:如圖3,過點(diǎn)EEFBCAB于點(diǎn)F

∵△ABC是等邊三角形,

∴∠ABC=ACB60°,

AFE=AEF60°,

則△AEF是等邊三角形,

EFAEBD,

又∠EFM=∠DBM,∠EMF=∠DMB

∴△MEF≌△MDBAAS),

EMDM,即點(diǎn)MDE的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、FG、H分別在它的四條邊上,且四邊形EFGH是什么特殊四邊形?你是如何判斷的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形中,點(diǎn)、、、分別在、、上,且

四邊形是正方形嗎?為什么?

若正方形的邊長(zhǎng)為,且,請(qǐng)求出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,ΔDCE都是等邊三角形,且B,C,E在同一條直線上,連接BDAC交于點(diǎn)M,連接AECD交于點(diǎn)N,BDAE交于點(diǎn)O.給出下列五個(gè)結(jié)論:①CDAB;②BD=AE;③CM=CN;④AO=OE;⑤∠AOD=120°.則其中正確結(jié)論有( )

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凸四邊形的四個(gè)頂點(diǎn)滿足:每一個(gè)頂點(diǎn)到其他三個(gè)頂點(diǎn)距離之積都相等.則四邊形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰OAB和等腰OCD中,OAOB,OCOD,連接ACBD交于點(diǎn)M

1)如圖1,若∠AOB=∠COD40°

ACBD的數(shù)量關(guān)系為   

②∠AMB的度數(shù)為   ;

2)如圖2,若∠AOB=∠COD90°

①判斷ACBD之間存在怎樣的數(shù)量關(guān)系?并說明理由;

②求∠AMB的度數(shù);

3)在(2)的條件下,當(dāng)∠CAB30°,且點(diǎn)C與點(diǎn)M重合時(shí),請(qǐng)直接寫出ODOA之間存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,,若四邊形面積為,則的長(zhǎng)為(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,平分于點(diǎn),在上截取,過點(diǎn)于點(diǎn).求證:四邊形是菱形;

如圖,中,平分的外角的延長(zhǎng)線于點(diǎn),在的延長(zhǎng)線上截取,過點(diǎn)的延長(zhǎng)線于點(diǎn).四邊形還是菱形嗎?如果是,請(qǐng)證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的面積為,對(duì)角線,交于點(diǎn),點(diǎn),,,分別是,,的中點(diǎn),連接,,得到菱形;點(diǎn),,,分別是,,,的中點(diǎn),連接,,,,得到菱形;…,依此類推,則菱形的面積為________

查看答案和解析>>

同步練習(xí)冊(cè)答案