(2008•哈爾濱)哈市某中學為了解該校學生對四種國家一級保護動物的喜愛情況,圍繞“在丹頂鶴、大熊貓、滇金絲猴、藏羚羊四種國家一級保護動物中,你最喜歡哪一種動物(只寫一種)”這一問題,在全校范圍內(nèi)隨機抽取部分同學進行問卷調(diào)查.甲同學根據(jù)調(diào)查結(jié)果計算得知:最喜歡丹頂鶴的學生人數(shù)占被抽取人數(shù)的16%;乙同學根據(jù)調(diào)查結(jié)果繪制成如下不完整的條形統(tǒng)計圖.請你根據(jù)甲、乙兩位同學提供的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學生?
(2)補全條形統(tǒng)計圖的空缺部分;
(3)如果全校有1200名學生,請你估計全校最喜歡滇金絲猴的學生有多少名?

【答案】分析:(1)根據(jù)喜歡丹頂鶴的學生人數(shù)是8人,占被抽取人數(shù)的16%,用除法計算;
(2)根據(jù)總?cè)藬?shù)和統(tǒng)計圖中的部分數(shù)據(jù)進行計算喜歡滇金絲猴的人數(shù),然后正確補全圖形;
(3)根據(jù)(2)中的數(shù)據(jù)計算樣本中喜歡滇金絲猴的人數(shù)占總體的百分比,再進一步估計總體.
解答:解:(1)8÷16%=50(名)
答:這次調(diào)查中,一共抽取了50名學生.

(2)喜歡滇金絲猴的人數(shù)50-8-20-10=12(名),如圖:

(3)在抽取的學生中,最喜歡滇金絲猴的人數(shù)占被抽取人數(shù)的百分比為×100%=24%,
由樣本估計總體得全校最喜歡滇金絲猴的學生約有1200×24%=288(名)
答:估計全校最喜歡滇金絲猴的學生有288名.
點評:已知部分占總體的百分比,用除法即可計算總?cè)藬?shù);能夠用樣本所占的百分比估計總體百分比,進行正確計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前知識點回歸+鞏固 專題11 一次函數(shù)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2008•哈爾濱)小李想用籬笆圍成一個周長為60米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當x是多少時,矩形場地面積S最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案