【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且與軸交于點(diǎn)C,與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)).
(1)求該拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P是該拋物線上一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過點(diǎn)P作PD∥軸,交直線AC于點(diǎn)D;作PE∥x軸,交直線AC于點(diǎn)E,以PD,PE為邊的矩形PEFD,問矩形PEFD周長是否存在最大值?若存在,求出此時(shí)P點(diǎn)的坐標(biāo)及最大值;若不存在,請說明理由;
(3)在問題(2)的條件下,P點(diǎn)滿足∠DAP=90°,且點(diǎn)E在軸上,點(diǎn)F在拋物線上,問是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x24x+3(2)存在,當(dāng)P(,-),矩形PEFD周長最大值為9(3)F1(2,1),F2(2+,1).
【解析】
(1)已知了拋物線的頂點(diǎn)坐標(biāo),可將拋物線的解析式設(shè)為頂點(diǎn)式,然后將函數(shù)圖象經(jīng)過的C點(diǎn)坐標(biāo)代入上式中,即可求出拋物線的解析式;
(2)先求出A點(diǎn)坐標(biāo),可知△AOC是等腰直角三角形,再求出直線AC的解析式,由題意可知矩形PEFD為正方形,故矩形PEFD周長等于4DP,設(shè)P(x, x24x+3),再表示出D點(diǎn)坐標(biāo)及DP的長,根據(jù)二次函數(shù)的性質(zhì)即可求出最大值;
(3)根據(jù)∠DAP=90°,過P點(diǎn)作AP⊥AC于拋物線的交點(diǎn)即為P點(diǎn),根據(jù)平行四邊形的性質(zhì)知:P、F的縱坐標(biāo)互為相反數(shù),可據(jù)此求出F點(diǎn)的縱坐標(biāo),代入拋物線的解析式中即可求出F點(diǎn)的坐標(biāo).
(1)∵拋物線的頂點(diǎn)為(2,1),
∴設(shè)拋物線的解析式為y=a(x2)21,
將C(0,3)代入上式,得:
3=a(02)21,a=1;
∴y=(x2)21,即y=x24x+3;
(2)令y=0,即x24x+3=0
解得x1=1,x2=3
∴A(3,0)
∴CO=AO
∴△AOC是等腰直角三角形,∠CAO=45°
設(shè)直線AC的解析式為y=kx+b(k≠0),
把A(3,0),C(0,3)代入得
解得
∴直線AC的解析式為y=-x+3
∵PE∥x軸,
∴∠DPE=∠CAO=45°
∴∠EDP=90°-∠DPE=45°
∴DP=PE
故矩形PEFD為正方形,
設(shè)P(x, x24x+3),則D(x,-x+3)
∴DP=(-x+3)-(x24x+3)=-x2+3x
∴矩形PEFD周長C=4DP=-4x2+12x=-4(x2-3x)= -4(x-)2+9
故存在當(dāng)x=時(shí),即P(,-),矩形PEFD周長最大值為9;
(3)如圖,過P點(diǎn)作AP⊥AC于拋物線的交點(diǎn)即為P點(diǎn),此時(shí)∠DAP=90°,
∵直線AC的解析式為y=-x+3
∴可設(shè)直線AP的解析為y=x+p
把A(3,0)代入得0=3+p
解得p=-3
∴直線AP的解析為y=x-3
聯(lián)立
解得x1=3,y=0或x=2,y=-1
∴P(2,-1)
∵A、P、E、F為頂點(diǎn)的平行四邊形
∴P、F的縱坐標(biāo)互為相反數(shù),
∴可設(shè)F(x,1),代入拋物線可得x24x+3=1,
解得x1=2,x2=2+;
∴符合條件的F點(diǎn)有兩個(gè),
即F1(2,1),F2(2+,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(0,5)(0,2)(4,2),直線l的解析式為y = kx+5-4k(k > 0).
(1)當(dāng)直線l經(jīng)過點(diǎn)B時(shí),求一次函數(shù)的解析式;
(2)通過計(jì)算說明:不論k為何值,直線l總經(jīng)過點(diǎn)D;
(3)直線l與y軸交于點(diǎn)M,點(diǎn)N是線段DM上的一點(diǎn), 且△NBD為等腰三角形,試探究:
①當(dāng)函數(shù)y = kx+5-4k為正比例函數(shù)時(shí),點(diǎn)N的個(gè)數(shù)有 個(gè);
②點(diǎn)M在不同位置時(shí),k的取值會(huì)相應(yīng)變化,點(diǎn)N的個(gè)數(shù)情況可能會(huì)改變,請直接寫出點(diǎn)N所有不同的個(gè)數(shù)情況以及相應(yīng)的k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫出以AB為斜邊的直角三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且;
(2)在圖2中畫出以AB為一邊的等腰三角形ABD,點(diǎn)D在小正方形的頂點(diǎn)上,且的面積為16.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人均從A地出發(fā),甲以60米/分的速度向東勻速行進(jìn),10分鐘后,乙以(60+m)米/分的速度按同樣的路線去追趕甲,乙出發(fā)5.5分鐘后,甲以原速原路返回,在途中與乙相遇,相遇后兩人均停止行進(jìn).設(shè)乙所用時(shí)間為t分鐘.
(1)當(dāng)m=6時(shí),解答:
①設(shè)甲與A地的距離為,分別求甲向東行進(jìn)及返回過程中,與t的函數(shù)關(guān)系式(不寫t的取值范圍);
②當(dāng)甲、乙二人在途中相遇時(shí),求甲行進(jìn)的總時(shí)間.
(2)若乙在出發(fā)9分鐘內(nèi)與甲相遇,求m的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形,以此方式,繞點(diǎn)O旋轉(zhuǎn)2018次得到正方形,如果點(diǎn)A的坐標(biāo)為(1,0),那么那么點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)學(xué)生的理化實(shí)驗(yàn)操作情況,隨機(jī)抽查了40名同學(xué)實(shí)驗(yàn)操作的得分,根據(jù)獲取的樣本數(shù)據(jù),制作了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請根據(jù)相關(guān)信息,解答下列問題:
(1)①中的描述應(yīng)為“6分”,其中的值為 ;扇形①的圓心角的大小是 ;
(2)求這40個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(3)若該校九年級(jí)共有360名學(xué)生,估計(jì)該校理化實(shí)驗(yàn)操作得滿分的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),頂點(diǎn)在折線M﹣P﹣N上移動(dòng),它們的坐標(biāo)分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動(dòng)過程中,點(diǎn)A橫坐標(biāo)的最小值為﹣3,則a﹣b+c的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
操作發(fā)現(xiàn):
如圖1和圖2,已知點(diǎn)為正方形的邊和上的一個(gè)動(dòng)點(diǎn)(點(diǎn),,除外),作射線,作于點(diǎn),于點(diǎn),于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在上(點(diǎn),除外)運(yùn)動(dòng)時(shí),求證:;
(2)如圖2,當(dāng)點(diǎn)在上(點(diǎn),除外)運(yùn)動(dòng)時(shí),請直接寫出線段,,之間的數(shù)量關(guān)系;
拓廣探索:
(3)在(1)的條件下,找出與相等的線段,并說明理由;
(4)如圖3,若點(diǎn)為矩形的邊上一點(diǎn),作射線,作于點(diǎn),于點(diǎn),于點(diǎn).若,,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交與A(4,-2),B(-2,n)兩點(diǎn),與軸交與點(diǎn)C.
(1)求,n的值;
(2)請直接寫出不等式的解集;
(3)點(diǎn)A關(guān)于軸對(duì)稱得到點(diǎn)A’,連接A’B,A’C,求△A’BC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com