閱讀下面的材料:

小明遇到一個(gè)問(wèn)題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.  如果,求的值.

他的做法是:過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.

請(qǐng)你回答:(1)AB和EH的數(shù)量關(guān)系為     ,CG和EH的數(shù)量關(guān)系為     的值為     .

(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為     (用含a的代數(shù)式表示).

(3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長(zhǎng)線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為     (用含m,n的代數(shù)式表示).

 

 

【答案】

(1),, ;(2);(3)

【解析】

試題分析:本題的設(shè)計(jì)獨(dú)具匠心:由平行四邊形中的一個(gè)特殊的例子出發(fā)(第1問(wèn)),推廣到平行四邊形中的一般情形(第2問(wèn)),最后再通過(guò)類比、轉(zhuǎn)化到梯形中去(第3問(wèn)).各種圖形雖然形式不一,但運(yùn)用的解題思想與解題方法卻是一以貫之:即通過(guò)構(gòu)造相似三角形,得到線段之間的比例關(guān)系,這個(gè)比例關(guān)系均統(tǒng)一用同一條線段來(lái)表達(dá),這樣就可以方便地求出線段的比值.本題體現(xiàn)了初中數(shù)學(xué)的類比、轉(zhuǎn)化、從特殊到一般等思想方法,有利于學(xué)生觸類旁通、舉一反三.(1)根據(jù)△BAF∽△HEF,可知兩三角形的相似比是3:1,所以AB=3EH;由EH∥AB、CD∥AB可得EH∥CD,故△BCG∽△BEH,而E為BC的中點(diǎn),所以兩三角形的相似比為2:1,所以CG=2EH;由平行四邊形對(duì)邊相等得,AB=CD,所以.

根據(jù)(1)的分析,易得.(3)本問(wèn)體現(xiàn)“類比”與“轉(zhuǎn)化”的情形,將(1)(2)問(wèn)中的解題方法推廣轉(zhuǎn)化到梯形中,如下圖所示.

試題解析:

解:(1)依題意,過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,如右圖1所示.則有△ABF∽△HEF,

,即AB=3EH

∵EH∥AB、CD∥AB可得EH∥CD,

∴△BCG∽△BEH,

又∵E為BC的中點(diǎn),

∴CG=2EH;

故填空依次為:,, .

同理根據(jù)(1)可以發(fā)現(xiàn):,;

故填空為 .

如上圖所示,過(guò)點(diǎn)E作EH//AB交BD的延長(zhǎng)線于點(diǎn)H,則有EH//AB//CD

∵EH//CD

∴△BCD∽△BEF,

,即

又∵

∵EH//AB

∴△ABF∽△EHF

故填空為:.

考點(diǎn):1、相似形綜合題;2、平行四邊形的性質(zhì);3、梯形;4、相似三角形的判定與性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個(gè)問(wèn)題:若1≤x≤m,求二次函數(shù)y=x2-6x+7的最大值.他畫(huà)圖研究后發(fā)現(xiàn),x=1和x=5時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)m進(jìn)行分類討論.
他的解答過(guò)程如下:
∵二次函數(shù)y=x2-6x+7的對(duì)稱軸為直線x=3,
∴由對(duì)稱性可知,x=1和x=5時(shí)的函數(shù)值相等.
∴若1≤m<5,則x=1時(shí),y的最大值為2;
若m≥5,則x=m時(shí),y的最大值為m2-6m+7.
請(qǐng)你參考小明的思路,解答下列問(wèn)題:
(1)當(dāng)-2≤x≤4時(shí),二次函數(shù)y=2x2+4x+1的最大值為
49
49

(2)若p≤x≤2,求二次函數(shù)y=2x2+4x+1的最大值;
(3)若t≤x≤t+2時(shí),二次函數(shù)y=2x2+4x+1的最大值為31,則t的值為
1或-5
1或-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的材料:
小明在研究中心對(duì)稱問(wèn)題時(shí)發(fā)現(xiàn):
如圖1,當(dāng)點(diǎn)A1為旋轉(zhuǎn)中心時(shí),點(diǎn)P繞著點(diǎn)A1旋轉(zhuǎn)180°得到P1點(diǎn),點(diǎn)P1再繞著點(diǎn)A1旋轉(zhuǎn)180°得到P2點(diǎn),這時(shí)點(diǎn)P與點(diǎn)P2重合.
如圖2,當(dāng)點(diǎn)A1、A2為旋轉(zhuǎn)中心時(shí),點(diǎn)P繞著點(diǎn)A1旋轉(zhuǎn)180°得到P1點(diǎn),點(diǎn)P1繞著點(diǎn)A2旋轉(zhuǎn)180°得到P2點(diǎn),點(diǎn)P2繞著點(diǎn)A1旋轉(zhuǎn)180°得到P3點(diǎn),點(diǎn)P3繞著點(diǎn)A2旋轉(zhuǎn)180°得到P4點(diǎn),小明發(fā)現(xiàn)P、P4兩點(diǎn)關(guān)于點(diǎn)P2中心對(duì)稱.
精英家教網(wǎng)精英家教網(wǎng)
(1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)P3、P4,小明在證明P、P4兩點(diǎn)關(guān)于點(diǎn)P2中心對(duì)稱時(shí),除了說(shuō)明P、P2、P4三點(diǎn)共線之外,還需證明
 
;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)A1(0,3)、A2(-2,0)、A2(2,0)為旋轉(zhuǎn)中心時(shí),點(diǎn)P(0,4)繞著點(diǎn)A1旋轉(zhuǎn)180°得到P1點(diǎn);點(diǎn)P1繞著點(diǎn)A2旋轉(zhuǎn)180°得到P2點(diǎn);點(diǎn)P2繞著點(diǎn)A3旋轉(zhuǎn)180°得到P3點(diǎn);點(diǎn)P3繞著點(diǎn)A1旋轉(zhuǎn)180°得到點(diǎn)p4點(diǎn)….繼續(xù)如此操作若干次得到點(diǎn)P5、P6、…,則點(diǎn)P2的坐標(biāo)為
 
,點(diǎn)P2017的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆北京市西城區(qū)(北區(qū))九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個(gè)問(wèn)題:若1≤xm,求二次函數(shù)的最大值.他畫(huà)圖研究后發(fā)現(xiàn),時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)進(jìn)行分類討論.
他的解答過(guò)程如下:
∵二次函數(shù)的對(duì)稱軸為直線,
∴由對(duì)稱性可知,時(shí)的函數(shù)值相等.
∴若1≤m<5,則時(shí),的最大值為2;
m≥5,則時(shí),的最大值為

請(qǐng)你參考小明的思路,解答下列問(wèn)題:
(1)當(dāng)x≤4時(shí),二次函數(shù)的最大值為_(kāi)______;
(2)若px≤2,求二次函數(shù)的最大值;
(3)若txt+2時(shí),二次函數(shù)的最大值為31,則的值為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省九年級(jí)上學(xué)期期末質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明遇到一個(gè)問(wèn)題:如圖(1,□ABCD,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.如果,的值.

他的做法是:過(guò)點(diǎn)EEHABBG于點(diǎn)H,則可以得到BAF∽△HEF.

請(qǐng)你回答:(1ABEH的數(shù)量關(guān)系為???? ,CGEH的數(shù)量關(guān)系為???? ,的值為???? .

2)如圖(2,在原題的其他條件不變的情況下,如果,那么的值為???? (用含a的代數(shù)式表示).

3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3,在四邊形ABCD,DCAB,點(diǎn)EBC延長(zhǎng)線上一點(diǎn),AEBD相交于點(diǎn)F. 如果,那么的值為???? (用含m,n的代數(shù)式表示).

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問(wèn)題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說(shuō)明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案