已知二次函數(shù)y=mx2-2mx+n(m,n為常數(shù),且m<0),下列自變量取值范圍中y隨x增大而增大的是


  1. A.
    x<2
  2. B.
    x<-1
  3. C.
    0<x<2
  4. D.
    x>-1
B
分析:首先確定拋物線的對稱軸,然后根據(jù)對稱軸確定其增減性即可.
解答:二次函數(shù)y=mx2-2mx+n(m,n為常數(shù),且m<0)的對稱軸為:x=-=1
∵m<0
∴開口向下,
∴當x<1時,y隨x增大而增大,
故選B.
點評:本題考查了二次函數(shù)的性質,解題的關鍵是根據(jù)對稱軸公式求得對稱軸.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=2x2-mx-4的圖象與x軸的兩個交點的橫坐標的倒數(shù)和為2,則m=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過點A(-3,6),并與x軸交于點B(-1,0)和精英家教網(wǎng)點C,頂點為P.
(1)求這個拋物線的解析式;
(2)求線段PC的長;
(3)設D為線段OC上的一點,且∠DPC=∠BAC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個二次函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=-
1
2
x2+mx+
3
2
的圖象經(jīng)過點A(-3,-6),并且該拋物線與x軸交于B、C兩點,與y軸的交點為E,P為拋物線的頂點.如圖所示.
(1)求這個二次函數(shù)表達式.
(2)設點D為線段OC上的一點,且滿足∠DPC=∠BAC,說明直線PC與直線AC的位置關系,并求出點D的坐標.
(3)在(1)中的拋物線上是否存在一點F,使S△BCF=
3
4
S△BCP?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y+x2+mx+m-2,說明:無論m取何實數(shù),拋物線總與x軸有兩個交點.

查看答案和解析>>

同步練習冊答案