【題目】定義:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
【答案】(1)證明見解析;(2)12.
【解析】
試題分析:(1)利用一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質證得OE=OB,即可證得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點,則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD-2S△ABF即可求解.
試題解析:(1)連接EF,
∵四邊形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四邊形ABFE是平行四邊形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=AD=3,
∵△AOB與△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四邊形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一長方形休閑廣場的四角都設計一塊半徑相同的四分之一圓的花壇,正中設計一個圓形噴水池,若四周圓形和中間圓形的半徑均為米,廣場長為米,寬為米.
(1)請列式表示廣場空地的面積;
(2)若休閑廣場的長為500米,寬為300米,圓形花壇的半徑為20米,求廣場空地的面積(計算結果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個兩位數(shù),個位上的數(shù)字是a,十位上的數(shù)字是b,用代數(shù)式表示這個兩位數(shù)是( 。
A. ab B. ba C. 10a+b D. 10b+a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列敘述中,不正確的是( )
A. 絕對值最小的實數(shù)是零 B. 算術平方根最小的實數(shù)是零
C. 平方最小的實數(shù)是零 D. 立方根最小的實數(shù)是零
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近似數(shù)8.090精確程度是( 。
A. 精確到百分位 B. 精確到萬分位 C. 精確到0.001 D. 精確到0.0001
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com