(本題滿分12分,其中第(1)小題5分,第(2)小題7分)
已知:如圖,斜坡AP的坡度為1∶2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.

求:【小題1】(1)坡頂A到地面PQ的距離;
【小題2】(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

【小題1】(1)過點AAHPQ,垂足為點H
∵斜坡AP的坡度為1∶2.4,∴.……………………………(2分)
設(shè)AH=5k,則PH=12k,由勾股定理,得AP=13k
∴13k=26. 解得k=2.∴AH=10.……………………………………(2分)
答:坡頂A到地面PQ的距離為10米.
【小題2】(2)延長BCPQ于點D
BCAC,ACPQ,∴BDPQ.……………………………………(1分)
∴四邊形AHDC是矩形,CD=AH=10,AC=DH.………………………(1分)
∵∠BPD=45°,∴PD=BD. ……………………………………………(1分)
設(shè)BC=x,則x+10=24+DH.∴AC=DH=x-14.
在Rt△ABC中,,即.……………………(2分)
解得,即.…………………………………………………(1分)
答:古塔BC的高度約為19米.解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)今年,號稱“千湖之省”的湖北正遭受大旱,為提高學(xué)生環(huán)境意識,節(jié)約用水,某校數(shù)學(xué)教師編制了一道應(yīng)用題:

為了保護水資源,某市制定一套節(jié)水的管理措施,其中對居民生活用水收費作如下規(guī)定:

月用水量(噸)

單價(元/噸)

不大于10噸部分

1.5

大于10噸不大于噸部分()

2

大于噸部分

3

(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費;

(2)記該用戶六月份用水量為噸,繳納水費為元,試列出的函數(shù)式;

(3)若該用戶六月份用水量為40噸,繳納水費元的取值范圍為,試求的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知拋物線x軸于A(1,0)、B(3,0)兩點,交y軸于點C,其頂點為D

(1)求b、c的值并寫出拋物線的對稱軸;

(2)連接BC,過點O作直線OEBC交拋物線的對稱軸于點E

求證:四邊形ODBE是等腰梯形;

(3)拋物線上是否存在點Q,使得△OBQ的面積等于四邊形ODBE的面積的?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知拋物線x軸于A(1,0)、B(3,0)兩點,交y軸于點C,其頂點為D

(1)求b、c的值并寫出拋物線的對稱軸;

(2)連接BC,過點O作直線OEBC交拋物線的對稱軸于點E

求證:四邊形ODBE是等腰梯形;

(3)拋物線上是否存在點Q,使得△OBQ的面積等于四邊形ODBE的面積的?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)今年,號稱“千湖之省”的湖北正遭受大旱,為提高學(xué)生環(huán)境意識,節(jié)約用水,某校數(shù)學(xué)教師編制了一道應(yīng)用題:
為了保護水資源,某市制定一套節(jié)水的管理措施,其中對居民生活用水收費作如下規(guī)定:
月用水量(噸)
單價(元/噸)
不大于10噸部分
1.5
大于10噸不大于噸部分()
2
大于噸部分
3
(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費;
(2)記該用戶六月份用水量為噸,繳納水費為元,試列出的函數(shù)式;
(3)若該用戶六月份用水量為40噸,繳納水費元的取值范圍為,試求的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)如圖(1),矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折
疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設(shè)點B坐標(biāo)為(m,0),其中m>0.

【小題1】(1)求點E、F的坐標(biāo)(用含m的式子表示);
【小題2】(2)連接OA,若△OAF是等腰三角形,求m的值;
【小題3】(3)如圖(2),設(shè)拋物線經(jīng)過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

同步練習(xí)冊答案