【題目】如圖,四邊形ABCD是平行四邊形,頂點(diǎn)A、B的坐標(biāo)分別是A(1,0),B(0,﹣2),頂點(diǎn)C、D在雙曲線 上,邊AD與y軸相交于點(diǎn)E, =10,則k的值是( )

A.-16
B.-9
C.-8
D.-12

【答案】D
【解析】過點(diǎn)D作DM⊥x軸,垂足為F,交BC與點(diǎn)F,過點(diǎn)C分別作CN⊥x軸、CH⊥DM,垂足分別為N、H,

∵S四邊形BEDC=S△ABE=10,

∴S△ABE=2,即 ×BE·AO=2,

∵A(1,0),

∴OA=1,

∴BE=4,

∵四邊形ABCD是平行四邊形,

∴CD=AB,∠ABC=∠CDA,

∵DM//BE,

∴∠EBC=∠EDM,

∴∠CDH=∠ABO,

∵∠AOB=∠CDH,

∴△CDH≌△ABO,

∴CH=AO=1,DH=BO=2,

又∵BC//AD,

∴四邊形BEDF是平行四邊形,

∴DF=BE=4,

∴S△CDF= ×4×1=2,

∴S四邊形BEDF=10-2=8,即BE·OM=8,

∴OM=2,

∴M(-2,0),

∴設(shè)D(-2,m),C(-3,m-2),

∴-2m=-3(m-2)=k,∴m=6,∴k=-12;

所以答案是:D.


【考點(diǎn)精析】掌握平行線的判定與性質(zhì)和三角形的面積是解答本題的根本,需要知道由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì);三角形的面積=1/2×底×高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1個(gè)等式:1-=×

2個(gè)等式:(1-)(1-)=×

3個(gè)等式:(1-)(1-)(1-)=×

4個(gè)等式:(1-)(1-)(1-)(1-)=×

5個(gè)等式:(1-)(1-)(1-)(1-)(1-)=×

······

(1) 寫出第6個(gè)等式;

(2) 寫出第n個(gè)等式(用含n的等式表示),并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+ x+c與x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB,點(diǎn)C(6, )在拋物線上,直線AC與y軸交于點(diǎn)D.

(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m,求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是一個(gè)正方形,其中幾塊陰影部分的面積如圖所示,則四邊形BMQN的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)響應(yīng)“陽光體育運(yùn)動”號召,利用課外活動積極參加體育鍛煉,每位同學(xué)從長跑、鉛球、立定跳遠(yuǎn)、籃球定時(shí)定點(diǎn)投籃中任選一項(xiàng)進(jìn)行了訓(xùn)練,訓(xùn)練前后都進(jìn)行了測試,現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃進(jìn)球數(shù)(每人投10次)進(jìn)行整理,作出如下統(tǒng)計(jì)圖表.

進(jìn)球數(shù)(個(gè))

8

7

6

5

4

3

人數(shù)

2

1

4

7

8

2


請你根據(jù)圖表中的信息回答下列問題:
(1)訓(xùn)練后籃球定時(shí)定點(diǎn)投籃人均進(jìn)球數(shù)為個(gè);進(jìn)球數(shù)的中位數(shù)為個(gè),眾數(shù)為個(gè);
(2)該班共有多少學(xué)生;
(3)根據(jù)測試資料,參加籃球定時(shí)定點(diǎn)投籃的學(xué)生訓(xùn)練后比訓(xùn)練前的人均進(jìn)球增加了20%,求參加訓(xùn)練之前的人均進(jìn)球數(shù)(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,ADAC,EAB的中點(diǎn),FAC延長線上一點(diǎn).

(1)EDEF,求證:ED=EF;

(2)(1)的條件下,若DC的延長線與FB交于點(diǎn)P,試判定四邊形ACPE是否為平行四邊形?并證明你的結(jié)論(請先補(bǔ)全圖形,再解答);

(3)ED=EF,EDEF垂直嗎?若垂直給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點(diǎn)A處,另一端在OP上滑動,將窗戶OM按圖示方向向內(nèi)旋轉(zhuǎn)35°到達(dá)ON位置,此時(shí),點(diǎn)A、C的對應(yīng)位置分別是點(diǎn)B、D.測量出∠ODB為25°,點(diǎn)D到點(diǎn)O的距離為30cm.
(結(jié)果精確到1cm.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin55°≈0.8,cos55°≈0.6,tan55°≈1.4)

(1)求B點(diǎn)到OP的距離;
(2)求滑動支架的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD、正方形BEFG和正方形DMNK的位置如圖所示,點(diǎn)A在線段NF上,AE=8,則△NFP的面積為( ).

A.30
B.32
C.34
D.36

查看答案和解析>>

同步練習(xí)冊答案