如圖,拋物線y=x2+mx+(m﹣1)與x軸交于點A(x1,0),B(x2,0),x1<x2,與y軸交于點C(0,c),且滿足x12+x22+x1x2=7.

(1)求拋物線的解析式;

(2)在拋物線上能不能找到一點P,使∠POC=∠PCO?若能,請求出點P的坐標;若不能,請說明理由


1)拋物線的解析式是y=x2-2x-3;(2)能;點P的坐標是(,-),(,-).

【解析】(1)依題意:x1+x2=-m,x1x2=m-1,∵x12+x22+x1x2=7,∴(x1+x22-x1x2=7,

∴(-m)2-(m-1)=7,即m2-m-6=0,解得m1=-2,m2=3,∵c=m-1<0,∴m=3不合題意

∴m=-2拋物線的解析式是y=x2-2x-3;

(2)能

如圖,設P是拋物線上的一點,連接PO,PC,過點P作y軸的垂線,垂足為D.

若∠POC=∠PCO,則PD應是線段OC的垂直平分線,∵C的坐標為(0,-3),

∴D的坐標為(0,-),∴P的縱坐標應是-,令x2-2x-3=-,解得,x1=,x2=,因此所求點P的坐標是(,-),(,-).


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


C.

【解析】如果將圖①看作是鋪成的一個1×1的正方形圖案,圖②看作是鋪成的一個2×2的正方形圖案,圖③看作是鋪成的一個3×3的正方形圖案,圖④看作是鋪成的一個4×4的正方形圖案,那么根據(jù)給出的四個圖形的規(guī)律可以知道,組成大正方形的每個小正方形上有一個完整的圓,因此圓的數(shù)目是大正方形邊長的平方;又每四個小正方形組成一個完整的圓,這樣的圓的個數(shù)是大正方形的邊長減1的平方,從而可得第10個圖中完整的圓共有個.

故選C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


若x,y滿足方程組.則x-y的值等于(     )

A.-l       B.1       C.2     D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,矩形ABCD對角線AC=10,BC=6,則圖中四個小矩形的周長和為               

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗,我市某食品廠為了解市民對去年銷售量較好的肉餡粽、豆沙粽、紅棗粽、蛋黃餡粽(以下分別用A、B、C、D表示這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查結果繪制成如下兩幅統(tǒng)計圖.

請根據(jù)以上信息回答:

(1)本次參加抽樣調查的居民有多少人?

(2)將不完整的條形圖補充完整.

(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù)?

(4)若有外型完全相同的A、B、C、D粽各一個煮熟后,小王吃了倆個,用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


不等式組的解在數(shù)軸上表示為(    )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是

A.k>2          B.k≥2            C.k≤2           D.k<2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知一次函數(shù)y1=x-6與反比例函數(shù)y2=的圖象交于A、B兩點.

(1)求A、B兩點的坐標;

(2)如,根據(jù)圖象直接寫出的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,正方形ABCD的對角線相交于O,點F在AD上,AD=3AF, △AOF的外接圓交AB于E,則的值為(   )

A.    B.3     C.     D.2

查看答案和解析>>

同步練習冊答案