【題目】如圖,等邊△ABC的邊長(zhǎng)為3,P為BC上一點(diǎn),且BP=1,D為AC上一點(diǎn),若∠APD=60°,則CD的長(zhǎng)為

【答案】
【解析】:∵△ABC是等邊三角形,
∴AB=BC=AC=3,∠B=∠C=60°,
∴∠BAP+∠APB=180°-60°=120°,
∵∠APD=60°,
∴∠APB+∠DPC=180°-60°=120°,
∴∠BAP=∠DPC ,
即∠B=∠C , ∠BAP=∠DPC ,
∴△BAP∽△CPD ,
=
AB=BC=3,CP=BC-BP=3-1=2,BP=1,
= ,
解得:CD=
所以答案是:
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對(duì)面一樓房CD的樓底C,樓頂D處,測(cè)得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,EF分別是邊BC , CD上的點(diǎn),且EFBD , AEAF分別交BD與點(diǎn)G和點(diǎn)H , BD=12,EF=8.求:
(1) 的值;
(2)線段GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DE分別在AB , AC上,DEBC , AD=CE . 若ABAC=3:2,BC=10,則DE的長(zhǎng)為(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,E、D分別是AC、BC的中點(diǎn),AD、BE交于點(diǎn)O , 則SDOESAOB=( 。
A.1:2
B.2:3
C.1:3
D.1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,過(guò)點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)EF . 過(guò)點(diǎn)EEGBC , 交ABG , 則圖中相似三角形有( 。
A.4對(duì)
B.5對(duì)
C.6對(duì)
D.7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程x2-x-3=0的較小根為x1 , 則下面對(duì)x1的估計(jì)正確的是( 。
A.-2< x1<-1
B.-3< x1<-2
C.2< x1<3
D.-1< x1<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式 ≥1,并把它的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

同步練習(xí)冊(cè)答案