【題目】如圖,點CD在線段AB上,PCD是等邊三角形,且CD2ADBC

1)求證:APD∽△PBC

2)求∠APB的度數(shù).

【答案】1)見解析;(2120°

【解析】

1CD2ADBC可得ADPCPDBC,又由PCD是等邊三角形,所以可求出∠ADP=∠BCP120°,進而證明ACP∽△PDB;

2)由APD∽△PBC,可得∠APD=∠B,則可求得∠APB的大。

1)證明:∵△PCD是等邊三角形,

PDPCDC,∠PDC=∠PCD60°

∴∠ADP=∠BCP120°,

CD2ADBC,

ADPCPDBC

∴△APD∽△PBC;

2)∵△APD∽△PBC,

∴∠APD=∠B,

∵∠B+BPC60°,

∴∠APD+BPC60°,

∴∠APB60°+DPC120°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)農(nóng)業(yè)部提出“大力發(fā)展農(nóng)村產(chǎn)業(yè),實現(xiàn)鄉(xiāng)村全面振興”的方針,我市精確扶貧,指導某縣大力發(fā)展大五星枇杷種植,去年、今年枇杷產(chǎn)量連續(xù)獲得大豐收,該縣枇杷銷售采用線下銷售和線上銷售兩種模式.

1)今年該縣種植專業(yè)戶大五星枇杷產(chǎn)量為4500千克,全部售出,其中線上銷售量不超過線下銷售的4倍,求該種植專業(yè)戶線下銷售量至少多少千克?

2)該種植專業(yè)戶去年大五星枇杷線下銷售均價為10/千克,銷售量為900千克,線上銷售均價為8/千克,銷售量為1800千克,今年線下銷售均價上漲,但銷售量下降了,線上銷售均價上漲了,銷量與去年持平,今年大五星枇杷的銷售總額比去年銷售總額減少了,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一張矩形紙片中,,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題:

1)如圖①,折痕為,點的對應(yīng)點上,求證:四邊形是正方形;

2)如圖②,、分別為的中點,把矩形紙片沿著剪開,變成兩張矩形紙片,將兩張紙片任意疊合后(如圖③),判斷重疊四邊形的形狀,并證明;

3)在(2)中,重疊四邊形的周長是否存在最大值或最小值?若存在,請求出最大值或最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O半徑為1,若點P在⊙O外且⊙O上存在點A、B使得∠APB60°,則稱點P是⊙O的領(lǐng)域點.

1)對以下情況,用三角板或量角器嘗試畫圖,并判斷點P是否是⊙O的領(lǐng)域點(在橫線上填不是).

①當OP1.2時,

P   O的領(lǐng)域點

②當OP2時,

P   O的領(lǐng)域點

③當OP3時,

P   O的領(lǐng)域點

2)若點P是⊙O的領(lǐng)域點,則OP的取值范圍是   ;

3)如圖,以圓心O為坐標原點建立平面直角坐標系xOy,設(shè)直線y=﹣x+bb0)與x軸、y軸分別相交于點M、N

①若線段MN上有且只有一個點是⊙O的領(lǐng)域點,求b的值;

②若線段MN上存在⊙O的領(lǐng)域點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A1,0)和點B 0-3),與x軸交于另一點C

1)求拋物線的解析式。

2)在拋物線上是否存在一點D,使ACD的面積與ABC的面積相等(點D不與點B重合)?若存在,求出點D的坐標;若不存在,請說明理由。

3)若點P是拋物線上的動點,點Q是拋物線對稱軸上的動點,那么是否存在這樣的點P,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,,上的三點,,點是的中點,點是上一動點,若的半徑為1,則的最小值為(

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點為坐標原點,拋物線經(jīng)過點.

1)求該拋物線的解析式及頂點坐標;

2)把該拋物線向 (填)平移 個單位長度,得到的拋物線與軸只有一個公共點;

3)平移該拋物線,使平移后的拋物線經(jīng)過點,且與軸交于點,同時滿足以,為頂點的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是正內(nèi)一點,,,將線段以點為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)得到線段,下列結(jié)論:①可以由繞點逆時針旋轉(zhuǎn)得到;②點的距離為6;③;④;⑤. 其中正確的結(jié)論是______(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=(m1x2+2x+m圖象與坐標軸有且只有2個交點,則m_____

查看答案和解析>>

同步練習冊答案