某校要把一塊形狀是直角三角形的廢地開發(fā)為生物園。如圖所示,∠ACB=90°,AC=80m,BC=60m。若線段CD為一條水渠,且D在邊AB上,已知水渠的造價是10元/米,則D點在距A點多遠(yuǎn)處時此水渠的造價最低?最低造價是多少?在圖上標(biāo)出D點。
480元,如下圖
【解析】
試題分析:過C作CD⊥AB于D,先根據(jù)勾股定理求得AB的長,然后由直角三角形的面積公式根據(jù)等面積法即可求得CD的長,最后在Rt△ACD中根據(jù)勾股定理即可求得結(jié)果.
解:過C作CD⊥AB于D
∵∠ACB=90°,AC=80m,BC=60m
∴AB==100m
由面積相等得AB·CD=,解得CD=48
在Rt△ACD中,AD==64
距A點64m時造價最低,最低價是元.
考點:垂線段最短的應(yīng)用,勾股定理的應(yīng)用
點評:勾股定理的應(yīng)用是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年云南紅河彌勒西二中學(xué)八年級下學(xué)期期末測試數(shù)學(xué)試卷(帶解析) 題型:解答題
某校要把一塊形狀是直角三角形的廢地開發(fā)為生物園。如圖所示,∠ACB=90°,AC=80m,BC=60m。若線段CD為一條水渠,且D在邊AB上,已知水渠的造價是10元/米,則D點在距A點多遠(yuǎn)處時此水渠的造價最低?最低造價是多少?在圖上標(biāo)出D點。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2005年福建省廈門市五校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com