【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過點(diǎn)O的直線分別與ABCD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°FO=FC,則下列結(jié)論:①FB垂直平分OC②△EOB≌△CMB;③DE=EF④SAOESBCM=23.其中正確結(jié)論的個數(shù)是( )

A. 4B. 3C. 2D. 1

【答案】C

【解析】試題分析:利用線段垂直平分線的性質(zhì)的逆定理可得結(jié)論;△OMB≌△OEB△EOB≌△CMB;

先證△BEF是等邊三角形得出BF=EF,再證DEBF得出DE=BF,所以得DE=EF;可知△BCM≌△BEO,則面積相等,△AOE△BEO屬于等高的兩個三角形,其面積比就等于兩底的比,即SAOESBOE=AEBE,由直角三角形30°角所對的直角邊是斜邊的一半得出BE=2OE=2AE,得出結(jié)論SAOESBOE=AEBE=12

①∵矩形ABCD中,OAC中點(diǎn), ∴OB=OC∵∠COB=60°, ∴△OBC是等邊三角形, ∴OB=BC,

∵FO=FC, ∴FB垂直平分OC, 故正確;

②∵FB垂直平分OC∴△CMB≌△OMB∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO∴△FOC≌△EOA

∴FO=EO, 易得OB⊥EF∴△OMB≌△OEB∴△EOB≌△CMB, 故正確;

△OMB≌△OEB≌△CMB∠1=∠2=∠3=30°,BF=BE∴△BEF是等邊三角形, ∴BF=EF,

∵DF∥BEDF=BE四邊形DEBF是平行四邊形, ∴DE=BF, ∴DE=EF, 故正確;

在直角△BOE∵∠3=30°∴BE=2OE, ∵∠OAE=∠AOE=30°∴AE=OE∴BE=2AE,

∴SAOESBCM=SAOESBOE=12, 故錯誤;

所以其中正確結(jié)論的個數(shù)為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A,B兩點(diǎn)相距25km,C,D為兩莊,DAABA,CBABB,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等.問:

(1)在離A站多少km處?

(2)判定三角形DEC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先找到長方形紙的寬DC的中點(diǎn)E,將∠CE點(diǎn)折起任意一個角,折痕是EF,再將∠DE點(diǎn)折起,使D′EC′E重合,折痕是GE,請?zhí)剿飨铝袉栴}:

(1)FEC′和∠GED′互為余角嗎?為什么?

(2)GEF是直角嗎?為什么?

(3)在上述折紙圖形中,還有哪些互為余角?哪些互為補(bǔ)角?(各寫出兩對即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的分式方程 無解,則m的值為( 。
A.﹣1.5
B.1
C.﹣1.5或2
D.﹣0.5或﹣1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1:y1=﹣x+2x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P(m,3)為直線l1上一點(diǎn),另一直線l2:y2=x+b過點(diǎn)P.

(1)求點(diǎn)P坐標(biāo)和b的值;

(2)若點(diǎn)C是直線l2x軸的交點(diǎn),動點(diǎn)Q從點(diǎn)C開始以每秒1個單位的速度向x軸正方向移動.設(shè)點(diǎn)Q的運(yùn)動時間為t秒.

①請寫出當(dāng)點(diǎn)Q在運(yùn)動過程中,△APQ的面積St的函數(shù)關(guān)系式;

②求出t為多少時,△APQ的面積小于3;

③是否存在t的值,使△APQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道,表示5與-2之差的絕對值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,試探索

1=_______

2同理表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到-5和2所對應(yīng)的兩點(diǎn)距離之和,請你找出所有符合條件的整數(shù)x,使得=7,這樣的整數(shù)是_______

3由以上探索猜想對于任何有理數(shù)x,是否有最小值?如果有,寫出最小值;如果沒有,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖1,若E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長是a,寬是b的長方形硬紙板的四周各剪去一個邊長為c的正方形(a>b>2c).再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計(jì)).

(1)若a=12,b=7,c=2,求折合成的長方體盒子的側(cè)面積是多少?

(2)請用含a,b,c的代數(shù)式表示折成的長方體盒子的底面周長;

(3)如果把長方體硬紙板的四周剪去2個邊長為c的正方形和2個同樣形狀、同樣大小的長方形,然后折合成一個有蓋的長方體盒子,那么它的底面周長是多少?(用含a,b,c的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EDC邊上一點(diǎn),且DE=1,AE=EF,∠AEF=90°,則FC= ( )

A. B. C. D. 1

查看答案和解析>>

同步練習(xí)冊答案