如圖,直線AB與直線CD相交于點O,OE⊥AB,垂足為O,若∠AOC=65°,則∠DOE的度數(shù)是
25°
25°
分析:根據(jù)對頂角相等可得∠DOB=65°,再根據(jù)垂直定義可得∠EOB=90°,再根據(jù)角的和差關系可得答案.
解答:解:∵∠AOC=65°,
∴∠DOB=65°,
∵OE⊥AB,
∴∠EOB=90°,
∴∠EOD=90°-65°=25°,
故答案為:25°.
點評:此題主要考查了垂線,關鍵是掌握當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•盤錦)如圖,直線y=
m3
x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設點E到直線l的距離為d,求d與t的函數(shù)關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=數(shù)學公式x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設點E到直線l的距離為d,求d與t的函數(shù)關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似的判定解答題(帶解析) 題型:解答題

如圖,直線y=x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設點E到直線l的距離為d,求d與t的函數(shù)關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年遼寧省盤錦市中考數(shù)學試卷(解析版) 題型:解答題

如圖,直線y=x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設點E到直線l的距離為d,求d與t的函數(shù)關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似的判定解答題(解析版) 題型:解答題

如圖,直線y=x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設點E離開坐標原點O的時間為t(t≥0)s.

(1)求直線AC的解析式;

(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;

(3)直線l在平移過程中,設點E到直線l的距離為d,求d與t的函數(shù)關系.

 

查看答案和解析>>

同步練習冊答案