【題目】平行四邊形的一邊長為10,那么它的兩條對角線的長度可以是( )。

A. 812 B. 420 C. 2040 D. 86

【答案】B

【解析】

根據(jù)題意畫出圖形,

由四邊形ABCD是平行四邊形,可得OA=AC,OB=BD,又由AB=10,利用三角形的三邊關(guān)系,可得

A、AC=8,BD=12,可得OA=4,OB=6,由于OA+OB=10,所以不能組成三角形,故本選項錯誤;
B、AC=4,BD=20,可得OA=2,OB=10,由于OA+AB=12>10,所以能組成三角形,故本選項正確;
C、AC=20,BD=40,可得OA=10,OB=20,由于OA+10=20=OB,所以不能組成三角形,故本選項錯誤;
D、AC=8,BD=6,可得OA=4,OB=3,由于OA+OB=7<10,所以不能組成三角形,故本選項錯誤.
故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對部分九年級學(xué)生進行了抽樣調(diào)查,就九年級學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他(如出國等)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖1,如圖2)

(1)填空:該地區(qū)共調(diào)查了 200 名九年級學(xué)生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請估計該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);
(4)老師想從甲,乙,丙,丁4位同學(xué)中隨機選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2 x+c經(jīng)過原點O與點A(6,0)兩點,過點A作AC⊥x軸,交直線y=2x﹣2于點C,且直線y=2x﹣2與x軸交于點D.

(1)求拋物線的解析式,并求出點C和點D的坐標;
(2)求點A關(guān)于直線y=2x﹣2的對稱點A′的坐標,并判斷點A′是否在拋物線上,并說明理由;
(3)點P(x,y)是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點Q,設(shè)線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l(fā)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F為對角線BD上的兩點,且∠DAE=∠BCF.

(1)求證:AE=CF;

(2)求證:AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC為矩形,點A,C分別在x軸和y軸上,連接AC,點B的坐標為(4,3),∠CAO的平分線與y軸相交于點D,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是A,B,C三個島的平面圖,C島在A島的北偏東32°方向,B島在A島的北偏東66°方向,C島在B島的北偏西44°方向.C島看A、B兩島的視角∠ACB的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D、E分別為AB、AC的中點,則△ADE與△ABC的面積比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗購買學(xué)習用品的收據(jù)如表,因污損導(dǎo)致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題:
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?

商品名

單價(元)

數(shù)量(個)

金額(元)

簽字筆

3

2

6

自動鉛筆

1.5

記號筆

4

軟皮筆記本

2

9

圓規(guī)

3.5

1

合計

8

28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖,點M、N把線段AB分割成AM、MNNB,若以AM、MN、NB為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股分割點.

1)已知MN把線段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,則點M、N是線段AB的勾股分割點嗎?請說明理由.

2)已知點M、N是線段AB的勾股分割點,且AM為直角邊,若AB=24AM=6,求BN的長.

查看答案和解析>>

同步練習冊答案