【題目】如圖,中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)移動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)移動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為.

(1)為何值時(shí),的面積等于面積的;

(2)運(yùn)動(dòng)幾秒時(shí),相似?

(3)在運(yùn)動(dòng)過程中,的長度能否為?試說明理由

【答案】1秒;(2秒或秒;(3的長度不能為,理由見解析

【解析】

(1)根據(jù)三角形的面積列方程即可求出結(jié)果;
(2)設(shè)經(jīng)過t秒后兩三角形相似,則可分下列兩種情況進(jìn)行求解,①若Rt△ABC∽R(shí)t△QPC,②若Rt△ABC∽R(shí)t△PQC,然后列方程求解;
(3)根據(jù)勾股定理列方程,此方程無解,于是得到在運(yùn)動(dòng)過程中,PQ的長度能否為1cm.

解:(1)經(jīng)過秒后,,由題意知,

當(dāng)的面積等于面積的時(shí),

,

解得:,,滿足題意,

所以經(jīng)過秒后,當(dāng)的面積等于面積的時(shí);

(2)設(shè)經(jīng)過秒后兩三角形相似,

①若,則,即,解之得;

②若,則,即,解之得

,滿足題意,

所以要使相似,運(yùn)動(dòng)的時(shí)間為秒或秒;

(3),若,

,

所以此方程無實(shí)數(shù)解,的長度不能為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的內(nèi)切圓,切ABAC于點(diǎn)D、E,∠DOE110°,則∠BOC的度數(shù)為(  )

A.115°B.120°C.125°D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,、是對(duì)角線上的兩個(gè)動(dòng)點(diǎn),是正方形四邊上的任意一點(diǎn),且,,設(shè),當(dāng)是等腰三角形時(shí),下列關(guān)于點(diǎn)個(gè)數(shù)的說法中,一定正確的是(

①當(dāng)(即兩點(diǎn)重合)時(shí),點(diǎn)有6個(gè);

②當(dāng)時(shí),點(diǎn)最多有9個(gè);

③當(dāng)是等邊三角形時(shí),點(diǎn)有4個(gè);

④當(dāng)點(diǎn)有8個(gè)時(shí),.

A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA、OB、OC都是⊙O的半徑,若∠AOB是銳角,且∠AOB2BOC,則下列結(jié)論正確的是( 。﹤(gè).

AB2BC;②2;③∠ACB2CAB;④∠ACB=∠BOC

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 A、B 兩點(diǎn)(點(diǎn) A 在點(diǎn) B 的左側(cè)),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 C、D 兩點(diǎn)(點(diǎn) C 在點(diǎn) D 的左側(cè)),其中 k 0, a b

(1)求證:函數(shù) y1 y2 的圖象交點(diǎn)落在一條定直線上;

(2) AB=CD,求 abk 滿足的關(guān)系式;

(3)是否存在函數(shù) y1 y2 ,使得 B,C 為線段 AD 的三等分點(diǎn)?若存在,求的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,F分別是銳角∠A兩邊上的點(diǎn),AE=AF,分別以點(diǎn)E,F為圓心,以AE的長為半徑畫弧,兩弧相交于點(diǎn)D,連接DE,DF

1)請(qǐng)你判斷所畫四邊形的性狀,并說明理由;

2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAC=90°,AB=AC,過點(diǎn)A作邊BC的垂線AF交DC的延長線于點(diǎn)E,點(diǎn)F是垂足,連接BE,DF,DF交AC于點(diǎn)O。則下列結(jié)論:①四邊形ABCD是正方形;②CO:BE=1:3;③DE=BC;④S四邊形OCEF=S△AOD 正確的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,已知二次函數(shù)y=﹣x2+bx的圖象過點(diǎn)A(4,0),頂點(diǎn)為B,連接AB、BO.

(1)求二次函數(shù)的表達(dá)式;

(2)若C是BO的中點(diǎn),點(diǎn)Q在線段AB上,設(shè)點(diǎn)B關(guān)于直線CQ的對(duì)稱點(diǎn)為B',當(dāng)△OCB'為等邊三角形時(shí),求BQ的長度;

(3)若點(diǎn)D在線段BO上,OD=2DB,點(diǎn)E、F在△OAB的邊上,且滿足△DOF與△DEF全等,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案