【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),DE=CF,AF與BE相交于O,DG⊥AF,垂足為G.
(1)求證:AF⊥BE;
(2)試探究線段AO、BO、GO的長(zhǎng)度之間的數(shù)量關(guān)系;
(3)若GO:CF=4:5,試確定E點(diǎn)的位置.

【答案】
(1)證明:∵ABCD為正方形,且DE=CF,

∴AE=DF,AB=AD,∠BAE=∠ADF=90°,

在△ABE和△DAF,

∴△ABE≌△DAF,

∴∠ABE=∠DAF,又∵∠ABE+∠AEB=90°,

∴∠DAF+∠AEB=90°,

∴∠AOE=90°,即AF⊥BE


(2)解:BO=AO+OG.

理由:由(1)的結(jié)論可知,

∠ABE=∠DAF,∠AOB=∠DGA=90°,AB=AD,

在△ABO和△DAG中,

則△ABO≌△DAG,

所以,BO=AG=AO+OG


(3)解:過E點(diǎn)作EH⊥DG,垂足為H,

由矩形的性質(zhì),得EH=OG,

∵DE=CF,GO:CF=4:5,∴EH:ED=4:5,

∵AF⊥BE,AF⊥DG,∴OE∥DG,

∴∠AEB=∠EDH,△ABE∽△HED,

∴AB:BE=EH:ED=4:5,

在Rt△ABE中,AE:AB=3:4,

故AE:AD=3:4,

即AE= AD.


【解析】(1)由DE=CF及正方形的性質(zhì),得出AE=DF,AB=AD,∠BAE=∠ADF=90°,證明△ABE≌△DAF,得出∠ABE=∠DAF,而∠ABE+∠AEB=90°,利用互余關(guān)系得出∠AOE=90°即可;(2)由(1)的結(jié)論可證△ABO≌△DAG,得BO=AG=AO+OG;(3)過E點(diǎn)作EH⊥DG,垂足為H,則EH=OG,由DE=CF,GO:CF=4:5,得EH:ED=4:5,而AF⊥BE,AF⊥DG,則OE∥DG,∠AEB=∠EDH,△ABE∽△HED,利用相似比得出AB:BE,由勾股定理得出AE:AB,從而得出AE:AD.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購(gòu)買200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購(gòu)物券30元.

(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購(gòu)物券的概率;

(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)水庫(kù)的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實(shí)施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫(kù)只能夠維持居民15年的用水量.

(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?

(2)政府號(hào)召節(jié)約用水,希望將水庫(kù)的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實(shí)現(xiàn)目標(biāo)?

(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費(fèi)用為1.5元,政府補(bǔ)貼0.3元.企業(yè)將淡化水以3.2元/m3的價(jià)格出售,每年還需各項(xiàng)支出40萬元.按每年實(shí)際生產(chǎn)300天計(jì)算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個(gè)位)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點(diǎn),∠C=60°.
(1)求∠APB的大;
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有以下說法:其中正確的說法有( 。

1)開方開不盡的數(shù)是無理數(shù);

2)無理數(shù)是無限循環(huán)小數(shù)

3)無理數(shù)包括正無理數(shù)和負(fù)無理數(shù);

4)無理數(shù)都可以用數(shù)軸上的點(diǎn)來表示;

5)循環(huán)小數(shù)都是有理數(shù)

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ= 時(shí),P、Q兩點(diǎn)間的距離 (用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AFBECF

            

1)請(qǐng)?jiān)趫D中找出一對(duì)全等三角形,用符號(hào)表示,并加以證明;

2判斷四邊形ABDF是怎樣的四邊形,并說明理由;

3AB=6,BD=2DC,求四邊形ABEF的面積..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F.若BF=3cm.求BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(2,﹣3),若Bx軸上一動(dòng)點(diǎn),則A、B兩點(diǎn)的距離的最小值為(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案