【題目】如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADB+∠EDC=120°.
(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長.
【答案】
(1)解:∵△ABC為正三角形,
∴∠B=∠C=60°,
∴∠ADB+∠BAD=120°,
∵∠ADB+∠CDE=120°,
∴∠BAD=∠CDE,
∴△ABD∽△DCE
(2)解:∵△ABD∽△DCE
∴ ,
設正三角形邊長為x,
則 ,
解得x=9,
即△ABC的邊長為9
【解析】(1)根據(jù)等邊三角形性質求出∠B=∠C=60°,根據(jù)等式性質求出∠BAD=∠CDE,即可證明△ABD∽△DCE;(2)由(1)知道△ABD∽△DCE,對應邊成比例得出 ,列方程解答即可.
【考點精析】認真審題,首先需要了解相似三角形的判定與性質(相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方).
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,P為等邊△ABC內一點,∠APB=113°,∠APC=123°,試說明:以AP,BP,CP為邊長可以構成一個三角形,并確定所構成三角形的各內角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2)
(1)寫出點A、B的坐標:A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點坐標A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O△ABC的三條邊所得的弦長相等,則下列說法正確的是( )
A.點O是△ABC的內心
B.點O是△ABC的外心
C.△ABC是正三角形
D.△ABC是等腰三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點B(1,4),且與直線y=﹣x﹣11平行.
(1)求直線AB的解析式并求出點C的坐標;
(2)根據(jù)圖象,寫出關于x的不等式0<2x﹣4<kx+b的解集;
(3)現(xiàn)有一點P在直線AB上,過點P作PQ∥y軸交直線y=2x﹣4于點Q,若線段PQ的長為3,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線的解析表達式為,且與軸交于點,直線經(jīng)過點,直線, 交于點.
(1)求點的坐標;
(2)求直線的解析表達式;
(3)求的面積;
(4)在直線上存在異于點的另一點,使得與的面積相等,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(0,﹣3),(2,5),(﹣1,﹣4)且與x軸交于A、B兩點,其頂點為P.
(1)試確定此二次函數(shù)的解析式;
(2)根據(jù)函數(shù)的圖象,指出函數(shù)的增減性,并直接寫出函數(shù)值y<0時自變量x的取值范圍.
(3)求△ABP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com