精英家教網(wǎng)已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.求證:EG=CG.
分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,EG=
1
2
DF,CG=
1
2
DF,所以EG=CG.
解答:證明:∵EF⊥BD,
∴△DEF為直角三角形,
∵G為DF中點,
∴EG=
1
2
DF,(直角三角形斜邊上的中線等于斜邊的一半),
在正方形ABCD中,∠BCD=90°,
又G為DF中點,
∴CG=
1
2
DF,(直角三角形斜邊上的中線等于斜邊的一半),
∴EG=CG.
點評:本題主要考查直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD中,對角線BD長為8,則正方形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD中,邊長為10厘米,點E在AB邊上,BE=6厘米.
(1)如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPE與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPE與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動,求經(jīng)過多長時間點P與點Q第一次在正方形ABCD邊上的何處相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長沙)如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EG•BG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD中,BD是對角線,BE平分∠DBC交DC于E點,若CE=1,則AB=
2
+1
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知正方形ABCD中的△DCF可以經(jīng)過旋轉(zhuǎn)得到△ECB.
(1)圖中哪個點是旋轉(zhuǎn)中心?
(2)按什么方向旋轉(zhuǎn)?旋轉(zhuǎn)角是多少度?
(3)若∠ECB=30°,求∠FCB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案