已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到△(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說明理由.
分析:(1)由四邊形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可證得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF; (2)由正方形ABCD的面積等于3,即可求得此正方形的邊長(zhǎng),由在△BGE與△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可證得△BGE∽△ABE,由相似三角形的面積比等于相似比的平方,即可求得答案; (3)首先由正切函數(shù),求得∠BAE=30°,易證得Rt△ABE≌Rt△≌Rt△,可得與AE在同一直線上,即BF與的交點(diǎn)是G,然后設(shè)BF與AE′的交點(diǎn)為H,可證得△BAG≌△HAG,繼而證得結(jié)論. 解答: (1)證明:∵四邊形ABCD是正方形, ∴∠ABE=∠BCF=90°,AB=BC, ∴∠ABF+∠CBF=90°, ∵AE⊥BF, ∴∠ABF+∠BAE=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中,
∴△ABE≌△BCF.(4分) (2)解:∵正方形面積為3, ∴AB=,(5分) 在△BGE與△ABE中, ∵∠GBE=∠BAE,∠EGB=∠EBA=90°, ∴△BGE∽△ABE,(7分) ∴, 又∵BE=1, ∴AE2=AB2+BE2=3+1=4, ∴S△BGE=×S△ABE==.(8分) (3)解:沒有變化.(9分) 理由:∵AB=,BE=1, ∴tan∠BAE==,∠BAE=30°,(10分) ∵=AD,∠AB′E′=∠ADE'=90°,公共, ∴Rt△ABE≌Rt△≌Rt△, ∴∠=∠=∠BAE=30°, ∴與AE在同一直線上,即BF與AB′的交點(diǎn)是G, 設(shè)BF與的交點(diǎn)為H, 則∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共, ∴△BAG≌△HAG,(11分) ∴S四邊形=S△-S△AGH=S△ABE-S△ABG=S△BGE. ∴△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積沒有變化.(12分) 點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)以及三角函數(shù)等知識(shí).此題綜合性較強(qiáng),難度較大,注意掌握旋轉(zhuǎn)前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用. |
相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì);解直角三角形. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖南益陽卷)數(shù)學(xué)(帶解析) 題型:解答題
已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖南益陽卷)數(shù)學(xué)(解析版) 題型:解答題
已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到△AB'E'(如圖2),使點(diǎn)E落在CD邊
上的點(diǎn)E'處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年甘肅省武威十三中中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com