【題目】家庭過期藥品屬于“危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境.某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對(duì)全市家庭做一次簡單隨機(jī)抽樣調(diào)查.

1)下列選取樣本的方法最合理的一種是____________.(只需填上正確答案的序號(hào))

①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽;

②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽取;

③在全市常住人口中以家庭為單位隨機(jī)抽。

經(jīng)抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:

2)填空:m=______,n=_____;

3)補(bǔ)全條形統(tǒng)計(jì)圖;

4)該市市民家庭處理過期藥品最常見的方式是 .(只填序號(hào))

5)家庭過期藥品的正確處理方式是送回收點(diǎn),若該市有180萬戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收點(diǎn).

【答案】1)③;(2206;(3)見詳解;(4B;(518萬戶.

【解析】

1)抽取的樣本要盡可能大,還要盡可能保證公平,所以應(yīng)該選③

2)根據(jù)B的數(shù)量和所占百分比可以算出樣本的總量,再算出D、E所占的百分比.

3)根據(jù)總量再算出C的數(shù)量填補(bǔ)齊表格即可

4B的所占比重最大,應(yīng)該選B;

5C所占得百分比為10%,用180×10%即可算出.

1)樣本的容量越大,調(diào)查的結(jié)果越接近真實(shí),而且選擇樣本要盡可能保證公平性,③符合

2)以A為目標(biāo),抽取人群總數(shù)=80÷8=1000

D所占百分比為200÷1000=20%

E所占百分比為60÷1000=6%

m=20,n=6

3)C的人數(shù)為1000×10=100,條形圖如下圖所示

4B所占的比重最大,所以應(yīng)該選擇B 

5)180萬×10%=18萬

答:大約有18萬戶家庭處理過期藥品的方式是送回收點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C坐標(biāo)為(﹣1,0),tan∠ACO2.一次函數(shù)ykx+b的圖象經(jīng)過點(diǎn)B、C,反比例函數(shù)y的圖象經(jīng)過點(diǎn)B

1)求一次函數(shù)關(guān)系式和反比例函數(shù)的關(guān)系式;

2)當(dāng)x0時(shí),kx+b0的解集為   ;

3)若x軸上有兩點(diǎn)E、F,點(diǎn)E在點(diǎn)F的左邊,且EF1.當(dāng)四邊形ABEF周長最小時(shí),請(qǐng)直接寫出點(diǎn)E的橫坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE是以AB為直徑的圓O上兩點(diǎn),且∠AED=45°,過點(diǎn)DDCAB

1)請(qǐng)判斷直線CD與圓O的位置關(guān)系,并說明理由;

2)若圓O的半徑為,,求AE的長;

3)過點(diǎn)D,垂足為F,直接寫出線段AE、BEDF之間的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn).得到,連接,交于點(diǎn)

1)求證:;

2)用表示的度數(shù);

3)若使四邊形是菱形,求的度數(shù),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙OAC為直徑,點(diǎn)D為弧ACB的中點(diǎn),過點(diǎn)D的切線與BC的延長線交于點(diǎn)E

1)用尺規(guī)作圖作出圓心O;(保留作圖痕跡,不寫作法);

2)求證:DEBC;

3)若OC=2CE=4,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于,,與軸交于點(diǎn).若點(diǎn),同時(shí)從點(diǎn)出發(fā),都以每秒個(gè)單位長度的速度分別沿邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

1)直接寫出二次函數(shù)的解析式;

2)當(dāng),運(yùn)動(dòng)到秒時(shí),將△APQ沿翻折,若點(diǎn)恰好落在拋物線上點(diǎn)處,求出點(diǎn)坐標(biāo);

3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)停止運(yùn)動(dòng),這時(shí),在軸上是否存在點(diǎn),使得以,為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暴雨過后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn). 半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問兩隊(duì)的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示二次函數(shù)y=ax2+bx+c的對(duì)稱軸在y軸的右側(cè),其圖象與x軸交于點(diǎn)A(﹣1,0)與點(diǎn)C(x2,0),且與y軸交于點(diǎn)B(0,﹣2),小強(qiáng)得到以下結(jié)論:0a2;﹣1b0;c=﹣1;當(dāng)|a|=|b|時(shí)x2﹣1;以上結(jié)論中正確結(jié)論的序號(hào)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,上一點(diǎn),以為圓心,長為半徑作圓,與相切于點(diǎn),過點(diǎn)的延長線于點(diǎn),.

(1)求證:的切線;

(2)若, ,的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案