【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c


(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認為應(yīng)選哪名隊員?

【答案】
(1)

解:甲的平均成績a= =7(環(huán)),

∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,

∴乙射擊成績的中位數(shù)b= =7.5(環(huán)),

其方差c= ×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]

= ×(16+9+1+3+4+9)

=4.2


(2)

解:從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;

綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大


【解析】(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,∠A=60°,點D是BC邊的中點,作射線DE,與邊AB交于點E,射線DE繞點D順時針旋轉(zhuǎn)120°,與直線AC交于點F.

(1)依題意將圖1補全;
(2)小華通過觀察、實驗提出猜想:在點E運動的過程中,始終有DE=DF.小華把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:由點D是BC邊的中點,通過構(gòu)造一邊的平行線,利用全等三角形,可證DE=DF;
想法2:利用等邊三角形的對稱性,作點E關(guān)于線段AD的對稱點P,由∠BAC與∠EDF互補,可得∠AED與∠AFD互補,由等角對等邊,可證DE=DF;
想法3:由等腰三角形三線合一,可得AD是∠BAC的角平分線,由角平分線定理,構(gòu)造點D到AB,AC的高,利用全等三角形,可證DE=DF….
請你參考上面的想法,幫助小華證明DE=DF(選一種方法即可);
(3)在點E運動的過程中,直接寫出BE,CF,AB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地保護環(huán)境,某區(qū)污水處理廠決定購買AB兩種型號污水處理設(shè)備10臺,其中每臺的價格、月處理污水量如下表.已知購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

(1)求a,b的值;

(2)某區(qū)污水處理廠決定購買污水處理設(shè)備的資金既不少于108萬元也不超過110萬元,問有幾種購買方案?每月最多能處理污水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB分別切⊙O于A、B兩點,點C在優(yōu)弧 上,∠P=80°,則∠C的度數(shù)為(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是(
A.1,2,3
B.1,1,
C.1,1,
D.1,2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分別以ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當三個等腰直角三角形都在該平行四邊形外部時,連接GF,EF.請判斷GF與EF的關(guān)系(只寫結(jié)論,不需證明);
(2)如圖2,當三個等腰直角三角形都在該平行四邊形內(nèi)部時,連接GF,EF,(1)中結(jié)論還成立嗎?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形OABC的邊長為2,頂點A,C分別在x軸的負半軸和y軸的正半軸上,M是BC的中點,P(0,m)是線段OC上一動點(C點除外),直線PM交AB的延長線于點D.

(1)求點D的坐標(用含m的代數(shù)式表示);

(2)當△APD是以AP為腰的等腰三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若某拋物線上有兩點A、B關(guān)于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2﹣2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:
(1)試判斷ac的符號;
(2)若c=﹣1,該二次函數(shù)圖象與y軸交于點C,且SABC=1.
①求a的值;
②當該二次函數(shù)圖象與端點為M(﹣1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上,從點A出發(fā),沿數(shù)軸向右移動3個單位長度到達點C,點B所表示的有理數(shù)是5的相反數(shù),按要求完成下列各小題.

(1)請在數(shù)軸上標出點B和點C;

(2)求點B所表示的有理數(shù)與點C所表示的有理數(shù)的乘積;

(3)若將該數(shù)軸進行折疊,使得點A和點B重合,則點C和數(shù)   所表示的點重合.

查看答案和解析>>

同步練習(xí)冊答案