(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)先解一元二次方程,得到線段OB、OC的長(zhǎng),也就得到了點(diǎn)B、C兩點(diǎn)坐標(biāo),根據(jù)拋物線的對(duì)稱性可得點(diǎn)A坐標(biāo);
(2)把A、B、C三點(diǎn)代入二次函數(shù)解析式就能求得二次函數(shù)解析式;
(3)易得S△EFF=S△BCE-S△BFE,只需利用平行得到三角形相似,求得EF長(zhǎng),進(jìn)而利用相等角的正弦值求得△BEF中BE邊上的高;
(4)利用二次函數(shù)求出最值,進(jìn)而求得點(diǎn)E坐標(biāo).OC垂直平分BE,那么EC=BC,所求的三角形是等腰三角形.
解答:解:(1)解方程x2-10x+16=0得x1=2,x2=8 (1分)
∵點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,且OB<OC
∴點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,8)
又∵拋物線y=ax2+bx+c的對(duì)稱軸是直線x=-2
∴由拋物線的對(duì)稱性可得點(diǎn)A的坐標(biāo)為(-6,0)(2分)

(2)∵點(diǎn)C(0,8)在拋物線y=ax2+bx+c的圖象上
∴c=8,將A(-6,0)、B(2,0)代入表達(dá)式,
得:
解得
∴所求拋物線的表達(dá)式為y=-x2-x+8(5分)

(3)依題意,AE=m,則BE=8-m,
∵OA=6,OC=8,
∴AC=10
∵EF∥AC
∴△BEF∽△BAC
=,即=
∴EF=(6分)
過(guò)點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=
=
∴FG==8-m
∴S=S△BCE-S△BFE
=(8-m)×8-(8-m)(8-m)
=(8-m)(8-8+m)
=(8-m)m
=-m2+4m(8分)
自變量m的取值范圍是0<m<8 (9分)

(4)存在.
理由:∵S=-m2+4m=-(m-4)2+8且-<0,
∴當(dāng)m=4時(shí),S有最大值,S最大值=8 (10分)
∵m=4,
∴點(diǎn)E的坐標(biāo)為(-2,0)
∴△BCE為等腰三角形.
點(diǎn)評(píng):本題綜合考查一元二次方程的解法;用待定系數(shù)法求二次函數(shù)解析式;以及求二次函數(shù)的最值等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年山東省中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:選擇題

(2008•雙柏縣)已知甲、乙兩地相距s(km),汽車(chē)從甲地勻速行駛到乙地,則汽車(chē)行駛的時(shí)間t(h)與行駛速度v(km/h)的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省南京市六合區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年云南省楚雄州雙柏縣中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•雙柏縣)已知甲、乙兩地相距s(km),汽車(chē)從甲地勻速行駛到乙地,則汽車(chē)行駛的時(shí)間t(h)與行駛速度v(km/h)的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案