已知反比例函數(shù)y=的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為( 。
| A. | B. | C. | D. |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線經(jīng)過A(﹣2,0),B(0,2),C(,0)三點,一動點P從原點出發(fā)以1個單位/秒的速度沿x軸正方向運動,連接BP,過點A作直線BP的垂線交y軸于點Q.設(shè)點P的運動時間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)BQ=AP時,求t的值;
(3)隨著點P的運動,拋物線上是否存在一點M,使△MPQ為等邊三角形?若存在,請直接寫t的值及相應(yīng)點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB∥DE,AC∥DF,AC=DF,下列條件中不能判斷△ABC≌△DEF的是( 。
| A. | AB=DE | B. | ∠B=∠E | C. | EF=BC | D. | EF∥BC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當(dāng)點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當(dāng)點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為 ,此時AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
貴陽市中小學(xué)幼兒園“愛心助殘工程”第九屆助殘活動于2014年5月在貴陽市盲聾啞學(xué)校舉行,活動當(dāng)天,貴陽市盲聾啞學(xué)校獲得捐贈的善款約為150000元.150000這個數(shù)用科學(xué)記數(shù)法表示為( 。
| A. | 1.5×104 | B. | 1.5×105 | C. | 1.5×106 | D. | 15×104 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com