【題目】如圖,BD為⊙O的直徑,點(diǎn)A是弧BC的中點(diǎn),AD交BC于E點(diǎn),AE=2,ED=4.

(1)求證:△ABE∽△ADB;
(2)求tan∠ADB的值;
(3)延長BC至F,連接FD,使△BDF的面積等于8 ,求證:DF與⊙O相切.

【答案】
(1)解:∵A是 的中點(diǎn),

∴∠BDA=∠ABE,

∵∠BAE=∠BAE,

∴△ABE∽△ADB


(2)解:由(1)可知: = ,

∴AB2=AEAD,

∵AE=2,ED=4.

∴AB=2

∵BD是⊙O的直徑,

∴∠BAD=90°,

∴tan∠ADB= = =


(3)解:連接CD,

∵AB=2 ,AD=6,

∴由勾股定理可知:BD=4

由(2)可知:tan∠ADB=

∴∠ADB=30°,

∴∠ABE=∠ADB=30°,

∴∠DBC=30°,

∵BD是⊙O的直徑,

∴∠BCD=90°,

∴sin∠DBC= ,

∴CD=2 ,

由勾股定理可知:BC=6,

∴SBDC= BCCD=6 ,

∴SCDF=SBDF﹣SBDC=2

∵SCDF= CFCD,

∴CF=2,

∴tan∠F= = ,

∴∠F=60°,

∴∠BDF=90°,

∴DF與⊙O相切.


【解析】(1)由等弧所對的圓周角相等即可證得;(2)利用第(1)的結(jié)論求出AB,根據(jù)正切 定義可求出;(3)要證相切,須證∠BDF=90°,須連接直徑,即連CD,利用(2)∠ADB=30°,則證出∠F=60°即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“利!蓖ㄓ嵠鞑纳虉觯(jì)劃用60000元從廠家購進(jìn)若干部新型手機(jī),出廠價(jià)分別為甲種型號(hào)手機(jī)每部1800元,乙種型號(hào)手機(jī)每部600元,丙種型號(hào)手機(jī)每部1200元.若商場同時(shí)購進(jìn)其中兩種不同型號(hào)的手機(jī)共40部,并將60000元恰好用完,請你幫助商場計(jì)算一下如何購買.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y= (k≠0)與一次函數(shù)y=mx+b(m≠0)交于點(diǎn)A(1,2k﹣1).
(1)求反比例函數(shù)的解析式;
(2)若一次函數(shù)與x軸交于點(diǎn)B,且△AOB的面積為3,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的垂直平分線于點(diǎn),交于點(diǎn)

1)若,求的度數(shù);

2)若,的周長為,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校要購買A,B兩種型號(hào)的足球,若買2個(gè)A型足球和3個(gè)B型足球,則要花費(fèi)600元,若買1個(gè)A型足球和4個(gè)B型足球,則要花費(fèi)550元.

1)求A,B兩種型號(hào)足球的銷售價(jià)格各是多少元/個(gè)?

2)學(xué)校擬向該體育器材門市購買AB兩種型號(hào)的足球共20個(gè),某體育用品商定有兩種優(yōu)惠活動(dòng),活動(dòng)一,一律打九折,活動(dòng)二,購物不超過1500元不優(yōu)惠,超過1500元部分打七折,請說明選擇哪種優(yōu)惠活動(dòng)購買足球更劃算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)By軸的正半軸上,點(diǎn)A在反比例函數(shù)的圖象上,點(diǎn)D的坐標(biāo)為.將菱形ABCD沿x軸正方向平移____個(gè)單位,可以使菱形的另一個(gè)頂點(diǎn)恰好落在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組

1)求方程組的解(用含a的代數(shù)式表示);

2)若2x>y,a的范圍;

3)求代數(shù)式的值;

4)若,求a的值(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)

(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個(gè)最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”期間,小紅到某景區(qū)登山游玩,小紅上山時(shí)間x(分鐘)與走過的路程y(米)之間的函數(shù)關(guān)系如圖所示,在小紅出發(fā)的同時(shí)另一名游客小卉正在距離山底60米處沿相同線路上山,若小紅上山過程中與小卉恰好有兩次相遇,則小卉上山平均速度v(米/分鐘)的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊答案