【題目】以邊長為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點(diǎn),則線段AB的取值范圍是 .
【答案】 ≤AB≤2
【解析】解:如圖所示: ∵四邊形CDEF是正方形,
∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,
∵AO⊥OB,
∴∠AOB=90°,
∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,
∴∠COA=∠DOB,
在△COA和△DOB中, ,
∴△COA≌△DOB(ASA),
∴OA=OB,
設(shè)OA=OB=a,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得:AB2=OA2+OB2=2a2 ,
由題意可得:1≤a≤ ,
∴ ≤AB≤2,
所以答案是 ≤AB≤2.
【考點(diǎn)精析】掌握正方形的性質(zhì)是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,D,E三點(diǎn)在同一直線上,且△BAD≌△ACE,試說明:
(1)BD=DE+CE;
(2)△ABD滿足什么條件時,BD∥CE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3,當(dāng)a≤x≤a+5時,函數(shù)y的最小值為﹣1,則a的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OABC的頂點(diǎn)A、C分別在直線x=2和x=4上,O為坐標(biāo)原點(diǎn),直線x=2分別與x軸和OC邊交于D、E,直線x=4分別與x軸和AB邊的交于點(diǎn)F、G.
(1)如圖,在點(diǎn)A、C移動的過程中,若點(diǎn)B在x軸上,
①直線 AC是否會經(jīng)過一個定點(diǎn),若是,請直接寫出定點(diǎn)的坐標(biāo);若否,請說明理由.
②OABC是否可以形成矩形?如果可以,請求出矩形OABC的面積;若否,請說明理由.
③四邊形AECG是否可以形成菱形?如果可以,請求出菱形AECG的面積;若否,請說明理由.
(2)在點(diǎn)A、C移動的過程中,若點(diǎn)B不在x軸上,且當(dāng)OABC為正方形時,直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,O是兩條對角線的交點(diǎn),過O點(diǎn)的三條直線將菱形分成陰影和空白部分.當(dāng)菱形的兩條對角線的長分別為6和8時,則陰影部分的面積為( )
A.24 cm2
B.20 cm2
C.16 cm2
D.12 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展學(xué)生安全知識競賽.現(xiàn)抽取部分學(xué)生的競賽成績(滿分為100分,得分均為整數(shù))進(jìn)行統(tǒng)計(jì),繪制了圖中兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,回答下列問題:
(1)a= , n=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校共有2 000名學(xué)生.若成績在80分以上的為優(yōu)秀,請你估計(jì)該校成績優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,則a與c平行嗎?為什么?
解:a與c平行.
理由:因?yàn)椤?=∠2( ),
所以a∥b ( ).
因?yàn)椤?+∠4=180°( ),
所以b∥c ( ).
所以a∥c ( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com