(2009•涼山州)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

【答案】分析:(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.
(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1
在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.
解答:解:(1)由題意得OA=|-4|+|8|=12,
∴A點坐標為(-12,0).
∵在Rt△AOC中,∠OAC=60°,
OC=OAtan∠OAC=12×tan60°=12
∴C點的坐標為(0,-12).
設直線l的解析式為y=kx+b,
由l過A、C兩點,
,解得
∴直線l的解析式為:y=-x-12

(2)如圖,設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1
則O1O3=O1P+PO3=8+5=13.
∵O3D1⊥x軸,∴O3D1=5,
在Rt△O1O3D1中,
∵O1D=O1O+OD=4+13=17,∴D1D=O1D-O1D1=17-12=5,
(秒).
∴⊙O2平移的時間為5秒.
點評:本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關系式;
(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關系式;
(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷13(黨灣鎮(zhèn)中 葉菁)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關系式;
(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省涼山州中考數(shù)學試卷(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

同步練習冊答案