【題目】如圖所示,三角形ABC沿直線m向右平移a厘米,得到三角形DEF,下列說法中錯誤的是(
A.AC∥DF
B.CF∥AB
C.CF=a厘米
D.BD=a厘米

【答案】D
【解析】解:A、△ABC向右平移得到△DEF,則AC∥DF成立,故正確; B、△ABC向右平移得到△DEF,則CF∥AB成立,故正確;
C、因?yàn)槿切蜛BC沿直線m向右平移a厘米,則CF=AD=BE=a成立,故正確;
D、BD=a厘米不能成立,故錯誤.
故選D.
【考點(diǎn)精析】掌握平移的性質(zhì)是解答本題的根本,需要知道①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一列數(shù),按一定規(guī)律排成1,﹣2,4,﹣8,16,﹣32,…,其中某三個相鄰數(shù)的和是192,則這三個數(shù)中最小的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:寫出二元一次方程x﹣3y=6的幾個解: , ,…,發(fā)現(xiàn)這些解的一般形式可表示為 (m為有理數(shù)).把一般形式再變形為 ,可得 =y+2,整理得原方程x﹣3y=6.根據(jù)閱讀材料解答下列問題:若二元一次方程ax+by=c的解,可以寫成 (n為有理數(shù)),則a+b+c=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于( 。

A.4
B.6或4
C.8
D.4或8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個根是0,則a的值是(
A.﹣1
B.1
C.1或﹣1
D.﹣1或0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)動屬于平移的是(  )

A. 空中放飛的風(fēng)箏

B. 飛機(jī)的機(jī)身在跑道上滑行至停止

C. 運(yùn)動員投出的籃球

D. 乒乓球比賽中高拋發(fā)球后,乒乓球的運(yùn)動方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC各頂點(diǎn)的坐標(biāo)分別為A(﹣2,5)B(﹣5,﹣2),C(3,3).將△ABC先向右平移4個單位長度,再向下平移3個單位長度,得到△A′B′C′.
(1)在圖中畫出第二次平移之后的圖形△A′B′C′;
(2)如果將△A′B′C′看成是由△ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,絕對值最小的數(shù)是(

A. 0 B. 1 C. -3 D. ±1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程32x1)=3x的解是_____

查看答案和解析>>

同步練習(xí)冊答案