【題目】華聯(lián)商場(chǎng)預(yù)測(cè)某品牌村衫能暢銷市場(chǎng),先用了8萬(wàn)元購(gòu)入這種襯衫,面市后果然供不應(yīng)求,于是商場(chǎng)又用了17.6萬(wàn)元購(gòu)入第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)入量的2倍,但單價(jià)貴了4元.商場(chǎng)銷售這種襯衫時(shí)每件定價(jià)都是58元,最后剩下的150件按定價(jià)的八折銷售,很快售完.
(1)第一次購(gòu)買這種襯衫的單價(jià)是多少?
(2)在這兩筆生意中,華聯(lián)商場(chǎng)共贏利多少元?
【答案】(1)第一批購(gòu)入襯衫的單價(jià)為每件40元.(2)兩筆生意中華聯(lián)商場(chǎng)共贏利90260元.
【解析】
試題(1)設(shè)第一批購(gòu)入的襯衫單價(jià)為x元/件,根據(jù)題目中的等量關(guān)系“第一批襯衫的數(shù)量×2=第二批襯衫的數(shù)量”可列方程,解方程即可.(2)在(1)的基礎(chǔ)上可求出兩次進(jìn)貨的數(shù)量以及每件的單價(jià),在這兩筆生意中,華聯(lián)商場(chǎng)共贏利分三部分,第一批襯衫的盈利和第二批襯衫兩部分的盈利,根據(jù)每件利潤(rùn)×件數(shù)=總利潤(rùn)分別求出這三部分的盈利相加即可得在這兩筆生意中,華聯(lián)商場(chǎng)共贏利的錢數(shù).
試題解析:(1)設(shè)第一批購(gòu)入的襯衫單價(jià)為x元/件,根據(jù)題意得,
.
解得:x=40,經(jīng)檢驗(yàn)x=40是方程的解,
答:第一批購(gòu)入襯衫的單價(jià)為每件40元.
(2)由(1)知,第一批購(gòu)入了80000÷40=2000件.
在這兩筆生意中,華聯(lián)商場(chǎng)共贏利為:2000×(58﹣40)+(2000×2-150)×(58﹣44)+150×(58×0.8﹣44)=90260元.
答:兩筆生意中華聯(lián)商場(chǎng)共贏利90260元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過(guò)點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4,cos∠ACH=,點(diǎn)B的坐標(biāo)為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
(3)直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將7張相同的小長(zhǎng)方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分恰好被分割為兩個(gè)長(zhǎng)方形,面積分別為S1和S2.已知小長(zhǎng)方形紙片的長(zhǎng)為a,寬為b,且a>b.
⑴當(dāng)a=9,b=3,AD=30時(shí),長(zhǎng)方形ABCD的面積是 ,S1﹣S2的值為 .
⑵當(dāng)AD=40時(shí),請(qǐng)用含a、b的式子表示S1﹣S2的值;
⑶若AB長(zhǎng)度為定值,AD變長(zhǎng),將這7張小長(zhǎng)方形紙片還按照同樣的方式放在新的長(zhǎng)方形ABCD內(nèi),而S1﹣S2的值總保持不變,則a、b滿足的什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=60°,將△ABC沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)落在點(diǎn)E處,且點(diǎn)B,A,E在一條直線上,CE交AD于點(diǎn)F,則圖中等邊三角形共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長(zhǎng)度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無(wú)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽樣調(diào)查了某校初一學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖).
請(qǐng)你根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)求出扇形統(tǒng)計(jì)圖中a的值,并求出該校初一學(xué)生總數(shù);
(2)分別求出活動(dòng)時(shí)間為5天、7天的學(xué)生人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(3)求出扇形統(tǒng)計(jì)圖中“活動(dòng)時(shí)間為4天”的扇形所對(duì)圓心角的度數(shù);
(4)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(5)如果該市共有初一學(xué)生6000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送,兩車各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)趟數(shù)是甲車的2倍,且乙車每趟運(yùn)費(fèi)比甲車少200元.
(1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?
(2)若單獨(dú)租用一臺(tái)車,租用哪臺(tái)車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在⊙O上,連接CO并延長(zhǎng)交弦AB于點(diǎn)D,,連接AC、OB,若CD=40,AC=.
(1)求弦AB的長(zhǎng);
(2)求sin∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)問(wèn)題:用邊長(zhǎng)相等的正三角形、正方形和正六邊形能否進(jìn)行平面圖形的鑲嵌?
問(wèn)題探究:為了解決上述數(shù)學(xué)問(wèn)題,我們采用分類討論的思想方法去進(jìn)行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進(jìn)行平面圖形的鑲嵌?
第一類:選正三角形.因?yàn)檎切蔚拿恳粋(gè)內(nèi)角是60°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有6個(gè)正三角形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形可以進(jìn)行平面圖形的鑲嵌.
第二類:選正方形.因?yàn)檎叫蔚拿恳粋(gè)內(nèi)角是90°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有4個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正方形也可以進(jìn)行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫(xiě)出探究過(guò)程及結(jié)論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進(jìn)行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正三角形和y個(gè)正方形的內(nèi)角可以拼成個(gè)周角.根據(jù)題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數(shù)解為.
鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著3個(gè)正三角形和2個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形和正方形可以進(jìn)行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫(xiě)出探究過(guò)程及結(jié)論)
第六類:選正方形和正六邊形,(不寫(xiě)探究過(guò)程,只寫(xiě)出結(jié)論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫(xiě)探究過(guò)程,只寫(xiě)結(jié)論),
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com